Practice 6.2 - Conservation of Momentum

1. a. A bullet going $560 . \mathrm{m} / \mathrm{s}$ imbeds in a stationary block of wood. The 272 g bullet and block combo are going $26.0 \mathrm{~m} / \mathrm{s}$ after the collision. What was the mass of the bullet? $(12.6 \mathrm{~g})$
b. Big J Sandvik (at rest) fires a 2.80 g rifle bullet to the left at $530 . \mathrm{m} / \mathrm{s}$. He recoils at $0.0220 \mathrm{~m} / \mathrm{s}$ to the right after this. What must be the mass of Big J Sandvik? (67.5 kg)
c. A 2960 kg Mazda Protégé going $34.0 \mathrm{~m} / \mathrm{s}$ strikes a 1410 kg Ford Escort traveling in the same direction at $18.0 \mathrm{~m} / \mathrm{s}$ from behind.

The two cars stick together. What is the velocity of the cars as they are stuck together? $(28.8 \mathrm{~m} / \mathrm{s})$
d. Two football players strike each other head on. Player 1 has a mass of $110 . \mathrm{kg}$ and is running $3.20 \mathrm{~m} / \mathrm{s}$ to the East, and player 2 has a mass of 85.0 kg is running $8.30 \mathrm{~m} / \mathrm{s}$ to the West. What is their post-collision velocity if they stick together? (Speed and direction) ($1.81 \mathrm{~m} / \mathrm{s}$ west)
e. 85.0 kg Big J Sandvik is standing on a 35.0 kg golf cart, and is holding a 8.20 kg golf club. Everything is moving to the right at some speed. After he throws the club, he is moving on the cart $3.00 \mathrm{~m} / \mathrm{s}$ to the right and the golf club is moving to the right at $41.0 \mathrm{~m} / \mathrm{s}$. What speed and in what direction was he, his cart and his club going to begin with? ($5.44 \mathrm{~m} / \mathrm{s}$ right)
2. a. A 3.5 g bullet going $960 . \mathrm{m} / \mathrm{s}$ imbeds in a stationary block of wood. The bullet and block combo are going $17.0 \mathrm{~m} / \mathrm{s}$ after the collision. What was the mass of the bullet and block combo? (0.198 kg)
b. Big J Sandvik fires a rifle bullet to the right at $870 . \mathrm{m} / \mathrm{s}$. He has a mass of 72.0 kg . If he is initially at rest on a frictionless surface, and has a recoil velocity of $0.0450 \mathrm{~m} / \mathrm{s}$ to the left, what is the mass of the bullet? (0.00372 kg)
c. A 12.0 kg cat moving an unknown velocity to the right strikes a 13.0 kg cat traveling to the right at $15.0 \mathrm{~m} / \mathrm{s}$. The two cats stick together and have a velocity of $18.0 \mathrm{~m} / \mathrm{s}$ to the right. What velocity was the first cat going before the collision? $(21.3 \mathrm{~m} / \mathrm{s})$
d. Bumper car A $(470 . \mathrm{Kg})$ with velocity $3.80 \mathrm{~m} / \mathrm{s}$ East collides with the front of car B $(420 . \mathrm{Kg})$ which has a velocity of $5.20 \mathrm{~m} / \mathrm{s}$ West. After the collision, car A has a velocity of $1.30 \mathrm{~m} / \mathrm{s}$ to the West. What is the velocity of car B after the collision? (Speed and direction) ($0.507 \mathrm{~m} / \mathrm{s}$ east)
e. 71.0 kg Big J Sandvik is standing on a 28.0 kg golf cart, and is holding a 3.60 kg golf club. Everything is moving to the right at $1.10 \mathrm{~m} / \mathrm{s}$. After he throws the golf club, he and the cart are moving $2.50 \mathrm{~m} / \mathrm{s}$ to the right. What speed and in what direction did Big J Sandvik throw the golf club? ($37.4 \mathrm{~m} / \mathrm{s}$ left)
3. a. A 6.20 g bullet going $860 \mathrm{~m} / \mathrm{s}$ imbeds in a stationary 340 . g block of wood. What is the velocity of the block of wood just after the collision? ($15.4 \mathrm{~m} / \mathrm{s}$)
b. A person at rest fires a 1.30 g rifle bullet to the right at $1120 . \mathrm{m} / \mathrm{s}$. The person recoils at $0.0240 \mathrm{~m} / \mathrm{s}$ to the left after this. What must be the mass of the person? $(60.7 \mathrm{~kg})$
c. A 3520 kg car (going an unknown velocity) strikes a 1020 kg car traveling in the same direction at $15.0 \mathrm{~m} / \mathrm{s}$ from behind. The two cars stick together and have a velocity of $21.0 \mathrm{~m} / \mathrm{s}$. What velocity was the first car going before the collision? $(22.7 \mathrm{~m} / \mathrm{s})$
d. Bumper car A (310 Kg) with velocity $4.60 \mathrm{~m} / \mathrm{s}$ East collides with the rear of car B $(540 . \mathrm{Kg})$ which has a velocity of $2.50 \mathrm{~m} / \mathrm{s}$ East. After the collision, car A has a velocity of $1.20 \mathrm{~m} / \mathrm{s}$ to the West. What is the velocity of car B after the collision? (Speed and direction) ($5.83 \mathrm{~m} / \mathrm{s}$ east)
e. 95.0 kg Thor is standing on a 43.0 kg cart, and is holding a 5.20 kg hammer. Everything is moving to the right at $2.40 \mathrm{~m} / \mathrm{s}$. What is the velocity of Thor and cart if he throws the hammer $32.0 \mathrm{~m} / \mathrm{s}$ to the left? (Speed and direction) ($3.70 \mathrm{~m} / \mathrm{s}$ right)
4. a. A 6.80 g bullet imbeds in a stationary 150 . g block of wood. The bullet and block combo are going $24.0 \mathrm{~m} / \mathrm{s}$ after the collision. What was the velocity of the bullet before the collision? ($553 \mathrm{~m} / \mathrm{s}$)
b. A 55.0 kg person at rest fires a 0.0130 kg rifle bullet to the right. The person recoils at $0.0890 \mathrm{~m} / \mathrm{s}$ to the left after this. What must be the velocity of the bullet? ($377 \mathrm{~m} / \mathrm{s}$ left)
c. A 3570 kg car going $21.2 \mathrm{~m} / \mathrm{s}$ strikes a 1470 kg car traveling in the same direction at $15.0 \mathrm{~m} / \mathrm{s}$ from behind. The two cars stick together. What velocity are they going after the collision? ($19.4 \mathrm{~m} / \mathrm{s}$)
d. Two football players strike each other head on. Player 1 has a mass of $110 . \mathrm{kg}$ and is running $7.20 \mathrm{~m} / \mathrm{s}$ to the East, and player 2 has a mass of 95.0 kg is running $4.30 \mathrm{~m} / \mathrm{s}$ to the West. What is their post-collision velocity if they stick together? (Speed and direction) ($1.87 \mathrm{~m} / \mathrm{s}$ east)
e. 115 kg Thor is standing on a 23.0 kg cart, and is holding a 4.20 kg hammer. Everything is moving to the right at $1.40 \mathrm{~m} / \mathrm{s}$. What is the velocity of Thor and cart if he throws the hammer $15.9 \mathrm{~m} / \mathrm{s}$ to the right? (Speed and direction) $(0.959 \mathrm{~m} / \mathrm{s}$ right)
5. a. A 4.50 g bullet going $770 \mathrm{~m} / \mathrm{s}$ imbeds in a stationary 210 . g block of wood. What is the velocity of the block of wood just after the collision? ($16.2 \mathrm{~m} / \mathrm{s}$)
b. A 62.0 kg person fires a 5.90 g rifle shell at $820 \mathrm{~m} / \mathrm{s}$. If the person is initially at rest on a frictionless surface, what is their recoil velocity after firing? $(0.0780 \mathrm{~m} / \mathrm{s})$
c. A 3230 kg car going $24.0 \mathrm{~m} / \mathrm{s}$ strikes a 2610 kg car traveling in the same direction from behind. The two cars stick together and are going $18.0 \mathrm{~m} / \mathrm{s}$ just after the collision. What velocity did the other car have before the collision? $(10.6 \mathrm{~m} / \mathrm{s})$
d. Two football players strike each other head on. Player 1 has a mass of $120 . \mathrm{kg}$ and is running $5.10 \mathrm{~m} / \mathrm{s}$ to the East, and player 2 has a mass of 99.0 kg is running to the West. If they stick together, and are together moving $1.50 \mathrm{~m} / \mathrm{s}$ to the West after the collision, was the velocity of player 2 before the collision? (Speed and direction) ($9.50 \mathrm{~m} / \mathrm{s}$ west)
e. 105 kg Thor is standing on a 45.0 kg cart, and is holding a 8.30 kg hammer. Everything is moving to the right at $2.30 \mathrm{~m} / \mathrm{s}$. After he throws the hammer, he and the cart are moving $1.60 \mathrm{~m} / \mathrm{s}$ to the right. What speed and in what direction did he throw the hammer? ($15.0 \mathrm{~m} / \mathrm{s}$ right)

