## Practice 6.1 - Rocket Science!!!!!

1. a. A 35.0 N unbalanced force is exerted on a 7.10 Kg mass for 36.0 seconds. What is the change of velocity of the mass? ( $177 \mathrm{~m} / \mathrm{s}$ )
b. A 0.145 Kg baseball going $41.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $31.0 \mathrm{~m} / \mathrm{s}$. If the bat exerted a force of 2530 N , for what time was it in contact with the bat? $(0.00413 \mathrm{~s})$
c. A rocket burns 42.4 kg in 6.50 s with an exhaust velocity of $720 \mathrm{~m} / \mathrm{s}$. What is the thrust of the engine? ( 4697 N )
d. A rocket engine burns fuel at a rate of 4.10 grams per second, and develops a force of 12.2 N . What must be the exhaust velocity? ( 1000 grams $=1 \mathrm{~kg}$ ) $(2976 \mathrm{~m} / \mathrm{s})$
e. A 114 kg rocket (total mass of fuel and rocket), burns 95.0 kg of fuel at a rate of $3.50 \mathrm{~kg} / \mathrm{s}$ with an exhaust velocity of 790 . $\mathrm{m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth? ( $14.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 136 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ )
2. a. A 62.0 N unbalanced force is exerted on an object for 4.5 seconds. The mass changes velocity from rest to $47 \mathrm{~m} / \mathrm{s}$. What is the mass of the object? $(5.94 \mathrm{~kg})$
b. A 0.138 Kg baseball going $37.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $45.0 \mathrm{~m} / \mathrm{s}$. If the collision lasted for .0121 seconds, what force did the bat exert on the baseball? ( 935 N )
c. A rocket engine develops 1240 N of thrust burning 56.2 kg of fuel in 21.5 s . What is the exhaust velocity? ( $474 \mathrm{~m} / \mathrm{s}$ )
d. A rocket engine burns fuel at a rate of 1.40 grams per second, and has an exhaust velocity of $890 \mathrm{~m} / \mathrm{s}$. What thrust does it develop? $(1000$ grams $=1 \mathrm{~kg})(1.25 \mathrm{~N})$
e. A 324 kg rocket, 292 kg of which is fuel, burns all of its fuel in 38.0 seconds with an exhaust velocity of $880 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth? ( $11.1 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 202 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ )
3. a. A force is exerted on a 23 Kg mass for 15 seconds. The mass changes velocity from rest to $45 \mathrm{~m} / \mathrm{s}$. What was the force? ( 69.0 N )
b. A ball going $27.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $41.0 \mathrm{~m} / \mathrm{s}$. If the bat exerted a force of 312 N for 0.0230 seconds, what is the mass of the ball? $(0.106 \mathrm{~kg})$
c. A rocket burns 35.1 kg of fuel generating 450 . N of thrust with an exhaust velocity of $790 \mathrm{~m} / \mathrm{s}$. What time do the engines burn? (61.6 s)
d. A rocket develops a thrust of 14.2 N , with an exhaust velocity of $910 \mathrm{~m} / \mathrm{s}$. What mass in fuel does the engine burn every second? ( $0.0156 \mathrm{~kg} / \mathrm{s}$ or $15.6 \mathrm{~g} / \mathrm{s}$ )
e. A 67.0 kg rocket (total mass of fuel and rocket), burns 52.0 kg of fuel at a rate of $2.70 \mathrm{~kg} / \mathrm{s}$ with an exhaust velocity of 642 $\mathrm{m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth? ( $16.1 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 106 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ )
4. a. A 68 N unbalanced force is exerted on a 12 Kg mass. The mass changes velocity from rest to $35 \mathrm{~m} / \mathrm{s}$. What time did the force act? ( 6.18 s )
b. A 0.141 Kg baseball going $34.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $58.0 \mathrm{~m} / \mathrm{s}$. If the bat exerted a force of 1830 N , for what time was it in contact with the bat? $(0.00709 \mathrm{~s})$
c. A rocket engine produces 360 . N of thrust for 45.0 s with an exhaust velocity of $770 \mathrm{~m} / \mathrm{s}$. What mass of fuel does it burn in this time? $(21.0 \mathrm{~kg})$
d. A rocket engine burns fuel at a rate of 14.0 grams per second, and develops a force of 31.7 N . What must be the exhaust velocity? $(1000$ grams $=1 \mathrm{~kg})(2264 \mathrm{~m} / \mathrm{s})$
e. A 19.0 kg rocket, 14.0 kg of which is fuel, burns its fuel at a rate of $0.420 \mathrm{~kg} / \mathrm{s}$ with an exhaust velocity of $650 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth? ( $4.57 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 44.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ )
5. a. A 23 N unbalanced force is exerted on a 46 Kg mass for 18 seconds. What is the change of velocity of the mass? (9.00 $\mathrm{m} / \mathrm{s}$ )
b. A 0.143 Kg baseball going $36.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $86.0 \mathrm{~m} / \mathrm{s}$. If the collision lasted for 0.0120 seconds, what force did the bat exert on the baseball? ( 1454 N )
c. A rocket engine burns 2.20 kg of fuel generating 89.0 N of thrust with an exhaust velocity of $710 \mathrm{~m} / \mathrm{s}$. What time does the engine burn? ( 17.6 s )
d. A rocket engine burns fuel at a rate of 11.0 grams per second, and has an exhaust velocity of $752 \mathrm{~m} / \mathrm{s}$. What thrust does it develop? $(1000$ grams $=1 \mathrm{~kg})(8.27 \mathrm{~N})$
e. A 5.70 kg rocket, 4.60 kg of which is fuel, burns all of its fuel in 10.3 seconds with an exhaust velocity of $610 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth? ( $38.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 238 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ )
