Momentum $\mathbf{p}=\mathbf{m v}$

$12190 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \quad 1$. What is the momentum of a 23 kg cannon shell going $530 \mathrm{~m} / \mathrm{s}$?
$4.8 \mathrm{~m} / \mathrm{s}$
0.066 kg
$2.825 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
3.29 kg
0.36 s
10.7 N
9.02 Ns
1.67 s
21.3 N 3.95 s
19.7 kg
$880 \mathrm{~m} / \mathrm{s}$
$0.02 \mathrm{~kg} / \mathrm{s}$
6.0 kg
180.8 s
$2.63 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
$7.73 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

140 s
75 kN
$5.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
$40.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
$906 \mathrm{~m} / \mathrm{s} \quad 6$. What speed must a 6.40 g bullet go to have the same momentum as a 145 g baseball going $40.0 \mathrm{~m} / \mathrm{s}$? (Roughly 90 mph)

Impulse Impulse = F $\Delta \mathbf{t}$

7.8 Ns 7. What is the impulse imparted by a rocket that exerts 4.8 N for 1.63 seconds?
8. For what time must you exert a force of 45 N to get an impulse of 16 Ns ?
9. What force exerted over 6 seconds gives you an impulse of 64 Ns?
10. What is the impulse that a baseball bat gives a ball with a force of 2820 N exerted for 0.00320 s ?
11. For what time must you exert a 12 N force to impart 20 . Ns of impulse?
12. What force exerted for 15.0 s imparts an impulse of 320 . Ns?
(These that follow are assessed on 6.1 - these are just extra practice problems) Impulse and Momentum $\mathbf{F} \boldsymbol{\Delta t}=\mathbf{m} \Delta \mathbf{v}$
$10.3 \mathrm{~m} / \mathrm{s} \quad 13$. What is the change in velocity of a 0.35 Kg air track cart if you exert a force of
1.2 N on it for 3.0 seconds?
$119 \mathrm{~kg} \quad 14$. A rocket engine exerts a force of 500 N on a space probe (in outer space!) for 5.0 seconds. The probe speeds up from rest to a speed of $21 \mathrm{~m} / \mathrm{s}$. What is its mass?
$1184 \mathrm{~N} \quad 15$. What force exerted for 0.012 seconds will make a 0.145 Kg baseball change its velocity $98 \mathrm{~m} / \mathrm{s}$?
$0.71 \mathrm{~s} \quad 16$. What time must the space probe in question 14. fire its engines to change its velocity by $3 \mathrm{~m} / \mathrm{s}$?

Rocket Propulsion

$3040 \mathrm{~N} \quad$ 17. A rocket engine burns 5 kg of fuel per second. The exhaust gas velocity is 608
2. What speed must a 5 kg object go to have $24 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ of momentum?
3. A bullet going $640 \mathrm{~m} / \mathrm{s}$ has $42 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ of momentum. What is its mass?
4. What is the momentum of a 2.50 g bullet going $1130 \mathrm{~m} / \mathrm{s}$?
5. What is the mass of a bowling ball that has a momentum of $46.0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ when it is going $14.0 \mathrm{~m} / \mathrm{s}$? m / s. What is the thrust of the engine? What time must it burn to impart an impulse of 12,000 Ns? How much fuel will it burn to do this?
18. An 11 Ns rocket engine has 12.5 grams of fuel. What is the exhaust velocity?
19. A rocket generates 25 N of thrust, and the exhaust gas velocity is $1250 \mathrm{~m} / \mathrm{s}$. At what rate does it consume fuel in kg / s ? How much fuel has it burned in 5 minutes? 20. A small rocket probe in deep space has a mass of $68.5 \mathrm{~kg}, 45.2 \mathrm{~kg}$ of which is fuel. Its engine consumes .250 kg of fuel per second, and it has an exhaust velocity of $720 \mathrm{~m} / \mathrm{s}$. For how much time will the engine burn? What is the initial acceleration of the rocket engine? What is the acceleration just before it runs out of fuel?
21. A rocket takes off from the surface of Earth straight up. The total mass of the rocket is $5000 \mathrm{~kg}, 3500 \mathrm{~kg}$ of which is fuel. The exhaust gas velocity is $3000 \mathrm{~m} / \mathrm{s}$, and the rocket consumes 25 kg of fuel per second. For how long do the engines burn? What is the thrust of the engine? What are the initial and final accelerations of the rocket? (Don't forget gravity!)

