Name \qquad

1. A 6.50 g bullet imbeds in a stationary 89.0 g block of wood. The bullet and block combo are going 24.0 m / s after the collision. What was the velocity of the bullet before the collision?
2. A 62.0 kg person fires a 4.50 g rifle shell at $780 \mathrm{~m} / \mathrm{s}$. If the person is initially at rest on a frictionless surface, what is their recoil velocity after firing?
3. A 3750 kg car going $24.0 \mathrm{~m} / \mathrm{s}$ strikes a 1740 kg car traveling in the same direction at $17.0 \mathrm{~m} / \mathrm{s}$ from behind. The two cars stick together. What velocity are they going after the collision?
4. Bumper car A ($624 . \mathrm{Kg}$) with velocity $2.80 \mathrm{~m} / \mathrm{s}$ East collides with the front of car $\mathrm{B}(518 . \mathrm{Kg})$ which has a velocity of $3.20 \mathrm{~m} / \mathrm{s}$ West. After the collision, car A has a velocity of $1.70 \mathrm{~m} / \mathrm{s}$ to the West. What is the velocity of car B after the collision? (Speed and direction)
5.115 kg Thor is standing on a 43.0 kg cart, and is holding a 7.30 kg hammer. Everything is moving to the right at $2.10 \mathrm{~m} / \mathrm{s}$. After he throws the hammer, he and the cart are moving $1.40 \mathrm{~m} / \mathrm{s}$ to the right. What speed and in what direction did he throw the hammer?
