

1) A 6.10 g bullet going $830 . \mathrm{m} / \mathrm{s}$ imbeds in a stationary $310 . \mathrm{g}$ block of wood. What is the velocity of the block of wood just after the collision? $(16.0 \mathrm{~m} / \mathrm{s})$
2) A 6.50 g bullet imbeds in a stationary 170 . g block of wood. The bullet and block combo are going $21.0 \mathrm{~m} / \mathrm{s}$ after the collision. What was the velocity of the bullet before the collision? $\left.{ }^{5} 570 \mathrm{~m} / \mathrm{s}\right)$

3) A person at rest fires a 1.70 g rifle bullet to the right at $1320 \mathrm{~m} / \mathrm{s}$. The person recoils at $0.0290 \mathrm{~m} / \mathrm{s}$ to the left after this. What must be the mass of the person? $(77.4 \mathrm{~kg})$
4) A 52.0 kg person at rest fires a 1.80 g rifle bullet to the right. The person recoils at $0.0720 \mathrm{~m} / \mathrm{s}$ to the left after this. What must be the velocity of the bullet? $(2080 \mathrm{~m} / \mathrm{s})$
5) A 61.0 kg person fires a 5.40 g rifle shell at $870 \mathrm{~m} / \mathrm{s}$. If the person is initially at rest on a frictionless surface, what is their recoil velocity after firing? $(0.0770 \mathrm{~m} / \mathrm{s})$

6) A 3500 kg car going $23.0 \mathrm{~m} / \mathrm{s}$ strikes a 1400 kg car traveling in the same direction at $13.0 \mathrm{~m} / \mathrm{s}$ from behind. The two cars stick together. What velocity are they going after the collision? ($20.1 \mathrm{~m} / \mathrm{s}$)
7) A 3800 kg car (going an unknown velocity) strikes a 1100 kg car traveling in the same direction at $17.0 \mathrm{~m} / \mathrm{s}$ from behind. The two cars stick together and have a velocity of $23.0 \mathrm{~m} / \mathrm{s}$. What velocity was the first car going before the collision? $(24.7 \mathrm{~m} / \mathrm{s})$
8) A 1200 kg car going $24.0 \mathrm{~m} / \mathrm{s}$ strikes a 2600 kg car traveling in the same direction from behind. The two cars stick together and are going $19.0 \mathrm{~m} / \mathrm{s}$ just after the collision. What velocity did the other car have before the collision? ($16.7 \mathrm{~m} / \mathrm{s}$)

Draw your own picture!

9) Two football players strike each other head on. Player 1 has a mass of $120 . \mathrm{kg}$ and is running $3.30 \mathrm{~m} / \mathrm{s}$ to the East, and player 2 has a mass of 95.0 kg is running $6.20 \mathrm{~m} / \mathrm{s}$ to the West. What is their post-collision velocity if they stick together? (Speed and direction)
($0.898 \mathrm{~m} / \mathrm{s}$ west)
10) Two football players strike each other head on. Player 1 has a mass of $110 . \mathrm{kg}$ and is running $3.50 \mathrm{~m} / \mathrm{s}$ to the East, and player 2 has a mass of 85.0 kg is running to the West. If they stick together, and are together moving $1.90 \mathrm{~m} / \mathrm{s}$ to the West after the collision, was the velocity of player 2 before the collision? (Speed and direction) ($8.89 \mathrm{~m} / \mathrm{s}$ west)
11) Bumper car A ($340 . \mathrm{Kg}$) with velocity $4.50 \mathrm{~m} / \mathrm{s}$ East collides with the rear of car B (610 Kg) which has a velocity of $2.40 \mathrm{~m} / \mathrm{s}$ East. After the collision, car A has a velocity of $1.40 \mathrm{~m} / \mathrm{s}$ to the West. What is the velocity of car B after the collision? (Speed and direction) ($5.69 \mathrm{~m} / \mathrm{s}$ east)
12) Bumper car A ($480 . \mathrm{Kg}$) with velocity $3.90 \mathrm{~m} / \mathrm{s}$ East collides with the front of car B $(410 . \mathrm{Kg})$ which has a velocity of $5.10 \mathrm{~m} / \mathrm{s}$ West. After the collision, car B has a velocity of $1.50 \mathrm{~m} / \mathrm{s}$ to the East. What is the velocity of car A after the collision? (Speed and direction) ($1.74 \mathrm{~m} / \mathrm{s}$ west)
13) 85.0 kg Thor is standing on a 35.0 kg cart, and is holding a 6.40 kg hammer. Everything is moving to the right at $3.40 \mathrm{~m} / \mathrm{s}$. What is the velocity of Thor and cart if he throws the hammer $25.0 \mathrm{~m} / \mathrm{s}$ to the left? (Speed and direction) $(4.91 \mathrm{~m} / \mathrm{s}$ right
14) 82.0 kg Thor is standing on a 25.0 kg cart, and is holding a 6.20 kg hammer. Everything is moving to the right at $2.40 \mathrm{~m} / \mathrm{s}$. What is the velocity of Thor and cart if he throws the hammer $18.0 \mathrm{~m} / \mathrm{s}$ to the left? $(3.58 \mathrm{~m} / \mathrm{s}$ right $)$
15) 88.0 kg Thor is standing on a 42.0 kg cart, and is holding a 8.40 kg hammer. Everything is moving to the right at $4.30 \mathrm{~m} / \mathrm{s}$. After he throws the hammer, he and the cart are moving $6.60 \mathrm{~m} / \mathrm{s}$ to the right. What speed and in what direction did he throw the hammer? ($31.3 \mathrm{~m} / \mathrm{s}$ left)
