$\mathbf{F} \Delta \mathbf{t}=\mathbf{m} \Delta \mathbf{v}$

1) If you exert a force of 45 N on a 52 kg frictionless cart at rest for 3.5 seconds, what is its change in velocity?
2) A 295 kg spacecraft has rockets that exert a force of 0.050 N (ion propulsion).

For what time must you "burn" these engines to change the velocity of the spacecraft by $350 . \mathrm{m} / \mathrm{s}$?
3) A 540 kg stage set floating on air bearings undergoes a change in velocity of $1.2 \mathrm{~m} / \mathrm{s}$ in 31 seconds. What force was exerted?

Velocity reversal: the change of $34 \mathrm{~m} / \mathrm{s}$ to the left to $40 \mathrm{~m} / \mathrm{s}$ to the right is a change of $74 \mathrm{~m} / \mathrm{s}$, so
$\Delta \mathbf{v}=74 \mathrm{~m} / \mathrm{s}$. (Use $\mathbf{F} \Delta \mathbf{t}=\mathbf{m} \Delta \mathbf{v}$)
4) A 0.145 Kg baseball going $40.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $61.0 \mathrm{~m} / \mathrm{s}$. If the collision lasted for 0.0120 seconds, what force did the bat exert on the baseball?
5) A 0.141 Kg baseball going $32.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $50.0 \mathrm{~m} / \mathrm{s}$. If the bat exerted a force of 1960 N , for what time was it in contact with the bat?
6) A ball going $35.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $42.0 \mathrm{~m} / \mathrm{s}$. If the bat exerted a force of 1780 N for 0.00630 seconds, what is the mass of the ball?

Rocket Thrust: $\mathbf{F} \boldsymbol{\Delta t}=\mathbf{m} \Delta \mathbf{v}$ - remember, if it says 45 grams per second that is 0.045 kg in $\underline{1}$ second 7) A rocket engine produces $410 . \mathrm{N}$ of thrust for 17.0 s with an exhaust velocity of $710 \mathrm{~m} / \mathrm{s}$. What mass of fuel does it burn in this time?
8) A rocket engine burns 1.20 kg of fuel generating 72.0 N of thrust with an exhaust velocity of $540 \mathrm{~m} / \mathrm{s}$. What time does the engine burn?
9) A rocket engine burns fuel at a rate of 13.0 grams per second, and has an exhaust velocity of $690 \mathrm{~m} / \mathrm{s}$. What thrust does it develop? (1000 grams $=1 \mathrm{~kg}$)
10) A rocket engine burns fuel at a rate of 12.0 grams per second, and develops a thrust of 8.50 N . What must be the exhaust velocity? (1000 grams $=1 \mathrm{~kg}$)

Initial and final acceleration:

11) A 8.30 kg rocket, 5.20 kg of which is fuel, burns all of its fuel in 12.0 seconds with an exhaust velocity of $610 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth? (Thmose 26.3 N)
12) A 320 kg rocket, 280 kg of which is fuel, burns all of its fuel in 32.0 seconds with an exhaust velocity of $780 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth? (Thmst $=6825 \mathrm{~N})$
13)A 71.0 kg rocket (total mass of fuel and rocket), burns 51.0 kg of fuel at a rate of $2.10 \mathrm{~kg} / \mathrm{s}$ with an exhaust velocity of $650 . \mathrm{m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth? (chrust $=1365 \mathrm{~N})$
