What does Momentum mean:

Write down the formula for momentum: (Be sure to write down what all the symbols mean, and their units)
$\mathbf{p}=$

Example: What is the momentum of a 145 g baseball going $40 . \mathrm{m} / \mathrm{s}$ :

Example: 60 kg Fran is running at $4 \mathrm{~m} / \mathrm{s}$ when she collides with 80 kg Joe head on. They hit and stop dead, so how fast was Joe going?
Whiteboards:

| 1. What is the momentum of a 22 g swallow going <br> $5.2 \mathrm{~m} / \mathrm{s}$ <br> $(0.11 \mathrm{~kg} \mathrm{~m} / \mathrm{s})$ | 2. What velocity must a 6.5 gram bullet have for <br> its momentum to be $5.8 \mathrm{kgm} / \mathrm{s}$ ? <br> $(890 \mathrm{~m} / \mathrm{s})$ |
| :--- | :--- |
|  |  |
| 3. A bowling ball has a momentum of $43.6 \mathrm{kgm} / \mathrm{s}$ <br> when it is going $12 \mathrm{~m} / \mathrm{s}$. What is its mass? <br> $(3.6 \mathrm{~kg})$ | Draw a picture of pretty flower here: |
|  |  |

Write down the formula for impulse: (Be sure to write down what all the symbols mean, and their units)

## Impulse =

Example: What impulse is imparted by exerting a 12 N force for 4.0 s ?

Example: Impulse is the area under a F vs. t graph


Show your calculation here:

Whiteboards:

| 1. What is the impulse of a 6.12 N force acting for 2.3 <br> seconds? <br> $(14 \mathrm{Ns})$ | 2. A rocket engine is rated at 14 Ns of impulse, and <br> burns for 1.7 seconds. What is the thrust of the engine? <br> $(8.2 \mathrm{~N})$ |
| :--- | :--- |
| 3. What is the impulse? (Area under the line) |  |

$\qquad$
Write down what these symbols are below:

## Impulse $=\mathbf{F} \boldsymbol{\Delta t}=\mathbf{m} \Delta \mathbf{v}$

Example: A pitcher pitches a 0.145 kg baseball at $+40 . \mathrm{m} / \mathrm{s}$, and the batter hits it directly back at $-50 . \mathrm{m} / \mathrm{s}$ to the outfield. What is the average force exerted by the bat if the collision lasted 0.013 s ? ( -1.0 E 3 N )

Why $\Delta \mathrm{v}$ is tricky:

Whiteboards:

| What force for 10. seconds makes a 2.0 kg rocket <br> speed up to $75 \mathrm{~m} / \mathrm{s}$ from rest? <br> $(15 \mathrm{~N})$ | A baseball bat exerts a force of 200. N on a 0.50 <br> kg ball for 0.10 seconds. What is the ball's change <br> in velocity? <br> $(40 \mathrm{~m} / \mathrm{s})$ |
| :--- | :--- |

Deriving Newton's Second law: (Write down the math steps from the last video)

## Noteguide for Rocket Science - Videos 6D

Write down what these are in terms of Rockets:

Example 1: A rocket burns fuel at a rate of $1.2 \mathrm{~kg} / \mathrm{s}$, with an exhaust velocity of $1250 \mathrm{~m} / \mathrm{s}$. What thrust does it develop?

Example 2: A model rocket engine develops 12.0 N of thrust with an exhaust velocity of $718 \mathrm{~m} / \mathrm{s}$. What is its fuel burn rate?

What is the rocket's initial acceleration if it has a mass of 238 g ?

Whiteboards:

| A certain rocket engine burns 0.0352 kg of fuel per second with an <br> exhaust velocity of $725 \mathrm{~m} / \mathrm{s}$. What thrust does it generate? <br> $(25.5 \mathrm{~N})$ | The Saturn V's first stage engines generated 33.82 MN of thrust <br> $\left(33.82 \times 10^{6} \mathrm{~N}\right)$ with an exhaust velocity of $2254.7 \mathrm{~m} / \mathrm{s}$. What was <br> its fuel burn rate? <br> $(15,000 \mathrm{~kg} / \mathrm{s})$ |
| :--- | :--- |

A D12 engine generates 11.80 N of thrust burning fuel at a rate of $0.0143 \mathrm{~kg} / \mathrm{s}$. What is the exhaust velocity? If the rocket has a mass of 139 grams, what is the initial upward acceleration? ( $825 \mathrm{~m} / \mathrm{s}, 75.1 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ )

## Vertical Acceleration of a Rocket

What are the 4 steps for solving these:
1.
2.
3.
4.

Example 1: A rocket has a total mass of $12.0 \mathrm{~kg}, 10.0 \mathrm{~kg}$ of which is fuel. It consumes all of its fuel in 8.50 seconds with an exhaust velocity of $420 \mathrm{~m} / \mathrm{s}$ What are its initial and final accelerations?

Example 2: A 21.0 kg rocket, 16.0 kg of which is fuel, burns its fuel at a rate of $0.820 \mathrm{~kg} / \mathrm{s}$ with an exhaust velocity of $730 . \mathrm{m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth?

Noteguide for Types of Rockets - Videos 6E part 3 Solid Fuel:


Liquid Fuel:


How do you keep from tipping?

Why is there "Steam" coming off the rocket


Saturn V rocket:
Label the diagram on the right


What is the main advantage of having multiple stages?


## Ion Propulsion



Where does an ion drive get its energy?

## Part 1 - Why Momentum must be conserved

Write down a proof that momentum must be conserved:


Example: $60 . \mathrm{kg}$ Sally going $4.5 \mathrm{~m} / \mathrm{s}$ collides head on with $80 . \mathrm{kg}$ Bob who is going $2.3 \mathrm{~m} / \mathrm{s}$.
Three steps:
The diagram and problem

Part 2 - Do the first four example problems below the first video: See if you can figure them out first, but if you can't, play the video... Example 1


Example 2

(-4.7 m/s)
(left)

## Example 3


( $1.73 \mathrm{~m} / \mathrm{s}$ )

## Example 4



