Conservation of Energy Questions from A5.2

$\begin{aligned} & 24.7 \mathrm{~m} \\ & 27.6 \mathrm{~N} \\ & 11.3 \mathrm{~m} / \mathrm{s} \\ & 7.10 \mathrm{~m} / \mathrm{s} \end{aligned}$	1. a. A 0.145 kg baseball going $22.0 \mathrm{~m} / \mathrm{s}$ straight up goes how high before stopping? b. A baseball pitcher speeds a 0.145 kg ball from rest to $38.0 \mathrm{~m} / \mathrm{s}$ over a distance of 3.80 m . What must be the average force exerted on the ball? (Neglect friction or any change in elevation) c. A 1340 kg car is moving at some speed at an elevation of 5.50 m partway up a hill, and then coasts to a stop at an elevation of 12.0 m . How fast was it going at 5.50 m elevation? (Neglect friction) d. A 150 kg sled is going $3.40 \mathrm{~m} / \mathrm{s}$ at the top of a 2.50 m tall hill. At the bottom it hits a patch of dirt that exerts a slowing force of $180 . \mathrm{N}$ for 4.20 m . How fast is the sled going after the dirt patch? (Neglect friction)
$\begin{aligned} & 89.7 \mathrm{~N} \\ & 9.44 \mathrm{~m} \\ & 178 \mathrm{~N} \\ & 2.41 \mathrm{~m} \end{aligned}$	2. a. A 0.320 kg hammer is going $8.20 \mathrm{~m} / \mathrm{s}$. What force would stop it in 0.120 m ? b. A 1530 kg car starts at rest and rolls down a hill. At the bottom it is going $13.6 \mathrm{~m} / \mathrm{s}$. How high was the hill? (Neglect friction) c. Mom gives 55.0 kg Tamara a push from rest on her massless sled for a distance of 7.20 m at the top of a 3.80 m tall hill. If she is going $11.0 \mathrm{~m} / \mathrm{s}$ at the bottom of the hill, what force did Mom exert at the top to speed her up? (Neglect friction) d. A $410 . \mathrm{kg}$ rollercoaster car going $3.40 \mathrm{~m} / \mathrm{s}$ hits an accelerator that exerts a force of $780 . \mathrm{N}$ to speed up the car over a distance of 14.0 m . The car then rolls up a hill where it is going $4.20 \mathrm{~m} / \mathrm{s}$. What is the height of the hill? (Neglect friction)
$\begin{aligned} & 1.71 \mathrm{~m} / \mathrm{s} \\ & 10.5 \mathrm{~m} \\ & 9.40 \mathrm{~m} / \mathrm{s} \\ & 3.99 \mathrm{~m} \end{aligned}$	3. a. A 5.00 kg pendulum starts from rest 0.150 m above the lowest point. What is its speed when it reaches the lowest point? b. A 0.170 kg ball is sped up with a 5.00 N force straight up from rest a vertical distance of 3.50 m . To what height does it rise above its lowest point before stopping? (Neglect air friction) c. A 0.170 kg ball is sped up with a 5.00 N force straight up from rest a vertical distance of 3.50 m . What is the velocity of the ball when it is a height of 6.00 m above its lowest point? (Neglect friction) d. A 784 kg rollercoaster car is going $7.50 \mathrm{~m} / \mathrm{s}$ at the top of a 2.15 m tall hill. At what height is it when it is going $4.50 \mathrm{~m} / \mathrm{s}$? (Neglect friction)
$\begin{aligned} & 1.40 \mathrm{~N} \\ & 25.6 \mathrm{~m} \\ & 8.91 \mathrm{~m} / \mathrm{s} \\ & 1.81 \mathrm{~m} \end{aligned}$	4. a. What force over 0.180 m exerted on a 0.345 kg air track glider speeds it from rest to $1.21 \mathrm{~m} / \mathrm{s}$? b. A 0.145 kg baseball is popped straight up, and goes 33.5 m in the air before coming back down. What was its initial velocity? (Neglect friction) c. A 1370 kg car going $14.7 \mathrm{~m} / \mathrm{s}$ on a level road strikes a puddle that exerts a retarding force of $5200 . \mathrm{N}$ What is the velocity of the car when it has gone 18.0 m into the puddle? d. A 680. kg Rollercoaster car at rest on top of a 3.50 m tall hill is sped up by a force of 7780 N for a distance of 2.50 m . What is the height of the car when it is going $9.50 \mathrm{~m} / \mathrm{s}$? (Neglect friction)
$\begin{aligned} & 9.29 \mathrm{~m} / \mathrm{s} \\ & 0.219 \mathrm{~m} \\ & 0.592 \mathrm{~m} \\ & 5.07 \mathrm{~m} / \mathrm{s} \end{aligned}$	5. a. A 65.0 kg sled starts from rest at the top of a 4.40 m tall hill. What is its speed at the bottom of the hill? (Neglect friction) b. Ferdinand exerts a force of 168 N for a distance of 18.5 m on the level speeding up a 1450 kg car initially at rest. The car then rolls up an incline. How much elevation will the car gain before it stops? (Neglect friction) c. Reginald exerts a force of 195 N for a distance of 35.0 m on the level speeding up a 985 kg car from rest. The car then rolls up an incline. What elevation has the car gained when it has a velocity of $1.50 \mathrm{~m} / \mathrm{s}$? (Neglect friction) d. A 450 kg roller coaster car initially at rest is launched from the top of a 2.30 m tall hill by a 4890 N force exerted over a distance of 3.80 m . What is the speed of the car when it is at the top of a 5.20 m tall hill? (Neglect friction)

