Efficiency and Power Questions from A5.1

$\begin{aligned} & 0.856,380 \mathrm{~J} \\ & 45.0 \mathrm{~W}, 2700 \mathrm{~J} \\ & 9.32 \mathrm{~m} \\ & 282 \mathrm{~s} \end{aligned}$	1. a. A heater consumes 125 J of fuel and produces 107 J of useful heat. What is its efficiency? How much fuel would it consume to produce 325 J of useful heat? b. A motor does 585 J of work in 13.0 seconds. What is its power output? What work could it do in 60.0 seconds? c. You do 412 J of work dragging a 26.5 kg box over a level floor (at a constant low speed) where the coefficient of dynamic friction is 0.170 . What distance did you drag it? d. What is the minimum time a 540 . W motor can lift a 3450 kg land rover 4.50 m ?
$\begin{aligned} & \hline 567 \mathrm{~J}, 408 \mathrm{~J} \\ & 80.4 \mathrm{~W}, 19.0 \mathrm{~s} \\ & 3.21 \mathrm{~m} \\ & 405 \mathrm{~W} \end{aligned}$	2. a. A heater is 91.0% efficient. How much useful heat would it produce from 623 J of fuel energy? How much fuel would it consume to produce 371 J of useful heat? b. A motor does 965 J of work in 12.0 seconds. What is its power output? In what time could it do 1530 J of work? c. You do 371 J of work lifting a 11.8 kg box. What height did you lift it? d. What is your power output if you drag a 87.0 kg sled a level distance of 43.0 m in 19.0 s where the coefficient of dynamic friction is 0.210 ?
$\begin{aligned} & 0.916,591 \mathrm{~J} \\ & 504 \mathrm{~J}, 1.80 \mathrm{~s} \\ & 9.97 \mathrm{~kg} \\ & 43.8 \mathrm{~s} \end{aligned}$	3. a. A heater consumes 215 J of fuel and produces 197 J of useful heat. What is its efficiency? How much useful heat would it produce from 645 J of fuel energy? b. What work does a 420 . W motor do in 12.0 seconds? What time would it take the motor to do 758 J of work? c. You do 850 . J of work raising what mass a vertical distance of 8.70 m ? d. A sled dog has a power output of 310 . W. In what time can it drag a 112 kg sled 95.0 m across a frozen lake where the coefficient of friction is 0.130 ?
$\begin{aligned} & 204 \mathrm{~J}, 584 \mathrm{~J} \\ & 51.6 \mathrm{~W}, 6970 \mathrm{~J} \\ & 15.0 \mathrm{~kg} \\ & 674 \mathrm{~W} \end{aligned}$	4. a. A heater is 82.0% efficient. How much fuel would it consume to produce 167 J of useful heat? How much useful heat would it produce from 712 J of fuel energy? b. A motor does 568 J of work in 11.0 seconds. What is its power output? What work could it do in 135 . seconds? c. You do 381 J of work dragging a box 23.5 m over a level floor (at a constant low speed) where the coefficient of dynamic friction is 0.110 . What is the mass of the box? d. What is the minimum power rating a motor can have if it needs to lift a 2350 kg SUV a vertical distance of 4.50 m in 154 s ?
0.945, 912 J $18900 \mathrm{~J}, 7.00 \mathrm{~s}$ 0.137 135 s	5. a. A heater consumes 618 J of fuel and produces 584 J of useful heat. What is its efficiency? How much fuel would it consume to produce 862 . J of useful heat? b. What work does a 118 W motor do in 16.0 seconds? What time would it take the motor to do 826 J of work? c. You do 645 J of work dragging a 15.0 kg box over a level floor (at a constant low speed) a distance of 32.0 m . What was the dynamic coefficient of friction? d. What is the minimum time a 746 . W motor can lift a 2770 kg land rover 3.70 m ?
	More Jambalaya: (All possible Jambalaya problems) Lifting: d. What time can a 12.5 W motor lift a 15.0 kg mass 65.0 m ? d. What is the mass of an elevator if a 150 . W motor takes 14.0 s to lift it 5.20 m ? d. What distance would a 63.0 W motor lift 78.0 kg in 57.0 s ? d. What power motor can lift $890 . \mathrm{kg} 45.0 \mathrm{~m}$ in $140 . \mathrm{s}$? Dragging: d. A 854 W tractor can drag a $780 . \mathrm{kg}$ mass $180 . \mathrm{m}$ in what time if the coefficient of friction is 0.160 ? d. A 720 . W winch drags a 1340 kg car with a coefficient of friction of 0.850 how far in 45.0 s ? d. A team of dogs can put out 1350 W of power. If the coefficient of friction between the sled and the ice is 0.120 , what mass can they drag 50.0 m in 120 . s? d. A conveyor belt is operated by a 420 . W motor. If it is supposed to move a 15.0 kg box 21.0 m in 17.0 s , what must be the coefficient of friction between it and the underlying surface? d. A tractor must be able to drag 1520 kg of logs $460 . \mathrm{m}$ across the ground where the coefficient of friction is 0.650 in 63.0 s . What must be the power minimum power output of the tractor?

