Practice 5.0 - Work and Energy

Work: $\mathrm{W}=\mathrm{Fd}$

1. How much work does Fred do exerting 45.0 N to lift a box 3.20 m ? (144 J)
2. How much work does Adair lifting a 12.0 N box up 5.00 m ? (60.0 J)
3. An alkaline AA battery contains 9360 J of energy. If it takes 68.0 N of force to drag a heavy box across the floor, how far could the energy in a AA battery drag the box? (138 m)
4. What vertical distance will 64.0 J of work lift a box that weighs 41.0 N ? (1.56 m)
5. Katherine moves a box 7.20 m doing 5.00 J of work. What is the frictional force? $(0.694 \mathrm{~N})$
6. What force exerted for 4.10 m does 117 J of work? (28.5 N)

Potential Energy: $\mathbf{P E}=\mathbf{m g h}$

7. What is the potential energy of a 5.40 Kg shot put that is 12.0 m in the air? (635 J)
8. What is the potential energy of a 3.20 kg clock weight that has been wound up to a height of 0.680 m ? (21.3 J)
9. What is the mass of a pile driver if it has $13,200 \mathrm{~J}$ of PE when it is 8.30 m in the air? $(162 \mathrm{Kg})$
10. What mass has a PE of 140 . J when it is at an elevation of 0.210 m ? $(68.0 \mathrm{~kg})$
11. An alkaline AA battery contains 9360 J of energy. If I connected it to a 100% efficient winch, how high could it lift a 72.0 kg person? ($13.3 \mathrm{~m}, 43.5$ feet)
12. To what height must a 0.145 Kg baseball rise to get a potential energy of 27.0 J ? (19.0 m)

Kinetic energy: $\mathrm{KE}=\mathbf{1} / \mathbf{2 m v}{ }^{\mathbf{2}}$
13.What is the kinetic energy of a 0.145 Kg baseball going $40.0 \mathrm{~m} / \mathrm{s}$? (about 90 mph) (116 J)
14. What is the kinetic energy of a $4.20 \mathrm{~g}(0.0042 \mathrm{~kg})$ bullet going $1120 \mathrm{~m} / \mathrm{s} ?(2634 \mathrm{~J})$
15.An alkaline AA battery contains 9360 J of energy. If I connected it to a 100% efficient pitching machine, how fast could it pitch a 0.145 kg baseball? ($359 \mathrm{~m} / \mathrm{s}$ or mach 1.05)
16. What speed must a 0.450 Kg hammer have to have a kinetic energy of 57.0 . J ? $(15.9 \mathrm{~m} / \mathrm{s})$
17. A pile driver must develop $14,500 \mathrm{~J}$ of kinetic energy when it is going $13.0 \mathrm{~m} / \mathrm{s}$. What does its mass have to be? (172 kg)
18. A bullet with a speed of $892 \mathrm{~m} / \mathrm{s}$ has a kinetic energy of 2740 J . What is its mass? (0.00689 Kg or 6.89 g)

