$$
\mathrm{Fd}+\mathrm{mgh}+{ }^{1} / 2 \mathrm{mv}^{2}=\mathrm{Fd}+\mathrm{mgh}+{ }^{1} / 2 \mathrm{mv}^{2}
$$

$1 \rightarrow \mathbf{1}$ problems:

1) If you exert 15.0 N vertically upward a distance of 0.850 m on a 0.145 kg baseball, to what height above the starting point will it rise? Neglect friction, and assume the baseball was initially motionless.
2) A 2130 kg car coasts from rest down a small hill that is 2.40 m tall. What is the velocity of the car at the bottom? Neglect friction
3) A 0.440 kg hammer going $9.60 \mathrm{~m} / \mathrm{s}$ horizontally strikes a nail, driving it into a wall 2.70 mm (0.00270 m) What force did it exert on the nail?

$\mathbf{2} \rightarrow \mathbf{1}$ or $\mathbf{1} \boldsymbol{\mathbf { 2 }}$ problems:

4) A 23.0 kg cart is going $5.70 \mathrm{~m} / \mathrm{s}$ at the top of a 1.70 m tall hill. What speed does it have at the bottom? Neglect friction
5) A 53.0 kg cart already going $4.20 \mathrm{~m} / \mathrm{s}$ is given a forward push with a force of 82.0 N for a distance of 11.0 m . It then rolls up a hill. To what height will it roll before stopping? Neglect friction
6) A 0.113 kg pine cone falls from a height of 5.60 m . It strikes the ground at $8.10 \mathrm{~m} / \mathrm{s}$. What was the average force of air friction slowing the pine cone as it fell?

$$
\mathrm{Fd}+\mathrm{mgh}+{ }^{1} / 2 \mathrm{mv}^{2}=\mathrm{Fd}+\mathrm{mgh}+{ }^{1} / 2 \mathrm{mv}^{2}
$$

$\mathbf{2} \boldsymbol{\rightarrow} \mathbf{2}$ problems:

7) A 12.0 kg cart is going $3.50 \mathrm{~m} / \mathrm{s}$ on top of a 4.50 m tall hill. What is its speed on top of a 2.30 m tall hill? Neglect friction
8) A 26.0 kg kid sledding down a 2.70 m tall hill from rest gets a push of 78.0 N for 3.70 m . What is their speed when they are at an elevation of 1.10 m ? Neglect friction
9) A 45.0 kg cart going $6.20 \mathrm{~m} / \mathrm{s}$ on the top of a 4.10 m tall hill is slowed at the bottom with by a braking force over a distance of 2.30 m until it is going only $6.70 \mathrm{~m} / \mathrm{s}$. What is the braking force?

In the space below, draw a cartoon of Mr. Duggan and Mr. Osborn firing air rockets from hip level at a hapless Mr. Jukkula dressed as a happy clown.

