Physics G

Work and Energy
(Chapter 5 Syllabus)

A/B	In Class	Due on this class
$\begin{gathered} \hline 1 \\ \text { Mar } \\ 3 / 4 \end{gathered}$	GW-It's All Uphill Lab GW-Jambalaya QL (5.1) DI-It's All Uphill recap	VF 5A, 5B, 5C, 5D
$\begin{gathered} \hline 2 \\ \mathrm{Mar} \\ 5 / 6 \\ \hline \end{gathered}$	GW-Jambalaya QL (5.1) Group Quiz 5.1 GW-FA5.1	Turn in QL 5.1-Jambalaya
3 Mar $9 / 10$	SA5.1-Work and Power (first 30 minutes) VF-5E, 5F, 5G	Turn in FA5.1
$\begin{gathered} 4 \\ \mathrm{Mar} \\ 11 / 12 \end{gathered}$	$\begin{aligned} & \text { GW-P5.0 \#1-3, 7, 9, 11, 13-15 } \\ & \text { GW-FA5.0 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { VF 5E, 5F, 5G } \\ \text { Turn in P5.0 \#1-3, 7, 9, 11, 13-15 } \end{array}$
5 Mar $13 / 16$	SA5.0-Work and Energy (first 30 minutes) VF-5K DI-Conservation of Energy	$\begin{array}{\|l\|} \hline \text { VF 5K } \\ \text { Turn in FA5.0 } \end{array}$
$\begin{gathered} 6 \\ \mathrm{Mar} \\ 17 / 18 \\ \hline \end{gathered}$	DI-Conservation of Energy GW-Conservation of Energy QL	Turn in QL5.2.1 - Pictures
$\begin{gathered} 7 \\ \text { Mar } \\ 19 / 20 \end{gathered}$	DI-Rollercoasters/PHET Energy Skate Park Group Quiz 5.2 GW-Human Power Output Lab GW-Conservation of Energy QL	VF Human Power Output Lab
SpringBreakYaySpringBreakYaySpringBreakYaySpringBreakYaySpringBreakYaySpringBreakYaySpring		
$\begin{gathered} 8 \\ \text { Mar31/ } \\ \text { Apr } 1 \\ \hline \end{gathered}$	GW-Human Power Output Lab GW-Conservation of Energy QL GW-Rollercoasters/Energy Skate Park	Turn in QL5.2.2 - Word Problems Turn in Human Power Output Lab
9 Apr $2 / 3$	$\begin{aligned} & \text { SA5.2-Conservation of Energy (first } 30 \text { minutes) } \\ & \text { VF-6A, 6B, 6C } \end{aligned}$	Turn in FA5.2
$\begin{gathered} 1 \\ \text { Apr } \\ 6 / 7 \end{gathered}$	Momentum and ROCKet Science!	VF 6D-Rocket Science

Assignments:

- 2 Labs:
- It's All Uphill/15 pts
- Human Power Output lab/30 pts
- 3 Formative/Summative Assessments:
- 5.0 - Work and Energy
- 5.1 - Efficiency and Power
- 5.2 - Conservation of Energy

Handouts:

\qquad
Energy - the ability to do work.
1.
2.
3.
4.
(Come up with a type of energy that you feel is not nuclear, and I will try to show that it is in class...)

Your example:

Electromagnetic - Energy of photons. (Einstein, big bang)

Potential - Energy of position. Stored energy.
Examples: Gravitational, chemical, springs

Kinetic - Energy of motion.
Examples: Baseballs, hammers

Thermal - Random potential and kinetic energy of molecules and atoms.
Examples: Hot stuff

Gravitational Potential Energy


```
PE=mgh
    PE-gravitational potential energy
    h}\mathrm{ - Change in height
    m}\mathrm{ - Mass
    g-9.8 N/kg on Earth
```

Example: What is the Potential Energy of a 5.0 kg mass 2.1 m from the ground?

Whiteboards:

1. What is the potential energy of a 4.5 kg bowling ball, 13.5 cm above the ground? (5.953 J)
2. Toby Continued lifts a 75.0 kg box doing 1573 J of work. What is the change in height of the box? (2.14 m)
3. Colin Host lifts himself up 15 m doing 9555 J of work. What is his mass? (65 kg)

$\mathrm{KE}=1 / 2 \mathrm{mv}^{2}$
KE - Kinetic energy
V - velocity
m -mass

Example: What is the kinetic energy of a 4.20 g bullet going $965 \mathrm{~m} / \mathrm{s}$? (units?)

Whiteboards:

1. Ex1 - What speed must a . 563 kg hammer move 2 . Ex2 - A European swallow has 2.055 J of to store 34 J of energy? ($11 \mathrm{~m} / \mathrm{s}$) kinetic energy when it is flying at $14.23 \mathrm{~m} / \mathrm{s}$. What is its mass in grams?
($0.020297 \mathrm{~kg}, 20.3 \mathrm{~g}$)
2. Ex3-A 4.0 kg shot is sped up from $6.0 \mathrm{~m} / \mathrm{s}$ to $9.0 \mathrm{~m} / \mathrm{s}$. What is the change in kinetic energy? (90 J) - (calculate two KEs and subtract)

Efficiency and Power Questions from A5.1

$\begin{aligned} & 0.856,380 \mathrm{~J}, \\ & 45.0 \mathrm{~W}, 2700 \mathrm{~J} \\ & 9.32 \mathrm{~m} \\ & 282 \mathrm{~s} \end{aligned}$	1. a. A heater consumes 125 J of fuel and produces 107 J of useful heat. What is its efficiency? How much fuel would it consume to produce 325 J of useful heat? b. A motor does 585 J of work in 13.0 seconds. What is its power output? What work could it do in 60.0 seconds? c. You do 412 J of work dragging a 26.5 kg box over a level floor (at a constant low speed) where the coefficient of dynamic friction is 0.170 . What distance did you drag it? d. What is the minimum time a $540 . W$ motor can lift a 3450 kg land rover 4.50 m ?
$\begin{aligned} & 567 \mathrm{~J}, 408 \mathrm{~J} \\ & 80.4 \mathrm{~W}, 19.0 \mathrm{~s} \\ & 3.21 \mathrm{~m} \\ & 405 \mathrm{~W} \end{aligned}$	2. a. A heater is 91.0% efficient. How much useful heat would it produce from 623 J of fuel energy? How much fuel would it consume to produce 371 J of useful heat? b. A motor does 965 J of work in 12.0 seconds. What is its power output? In what time could it do 1530 J of work? c. You do 371 J of work lifting a 11.8 kg box. What height did you lift it? d. What is your power output if you drag a 87.0 kg sled a level distance of 43.0 m in 19.0 s where the coefficient of dynamic friction is 0.210 ?
$\begin{aligned} & 0.916,591 \mathrm{~J} \\ & 5040 \mathrm{~J}, 1.80 \mathrm{~s} \\ & 9.97 \mathrm{~kg} \\ & 43.8 \mathrm{~s} \end{aligned}$	3. a. A heater consumes 215 J of fuel and produces 197 J of useful heat. What is its efficiency? How much useful heat would it produce from 645 J of fuel energy? b. What work does a 420 . W motor do in 12.0 seconds? What time would it take the motor to do 758 J of work? c. You do 850 . J of work raising what mass a vertical distance of 8.70 m ? d. A sled dog has a power output of 310 . W. In what time can it drag a 112 kg sled 95.0 m across a frozen lake where the coefficient of friction is 0.130 ?
$\begin{array}{\|l\|} \hline 204 \mathrm{~J}, 584 \mathrm{~J} \\ 51.6 \mathrm{~W}, 6970 \mathrm{~J} \\ 15.0 \mathrm{~kg} \\ 674 \mathrm{~W} \end{array}$	4. a. A heater is 82.0% efficient. How much fuel would it consume to produce 167 J of useful heat? How much useful heat would it produce from 712 J of fuel energy? b. A motor does 568 J of work in 11.0 seconds. What is its power output? What work could it do in 135 . seconds? c. You do 381 J of work dragging a box 23.5 m over a level floor (at a constant low speed) where the coefficient of dynamic friction is 0.110 . What is the mass of the box? d. What is the minimum power rating a motor can have if it needs to lift a 2350 kg SUV a vertical distance of 4.50 m in 154 s ?
$\begin{aligned} & 0.945,912 \mathrm{~J} \\ & 1890 \mathrm{~J}, 7.00 \mathrm{~s} \\ & 0.137 \\ & 135 \mathrm{~s} \end{aligned}$	5. a. A heater consumes 618 J of fuel and produces 584 J of useful heat. What is its efficiency? How much fuel would it consume to produce 862 . J of useful heat? b. What work does a 118 W motor do in 16.0 seconds? What time would it take the motor to do 826 J of work? c. You do 645 J of work dragging a 15.0 kg box over a level floor (at a constant low speed) a distance of 32.0 m . What was the dynamic coefficient of friction? d. What is the minimum time a $746 . W$ motor can lift a 2770 kg land rover 3.70 m ?
	More Jambalaya: (All possible Jambalaya problems) Lifting: d. What time can a 12.5 W motor lift a 15.0 kg mass 65.0 m ? d. What is the mass of an elevator if a 150 . W motor takes 14.0 s to lift it 5.20 m ? d. What distance would a 63.0 W motor lift 78.0 kg in 57.0 s ? d. What power motor can lift $890 . \mathrm{kg} 45.0 \mathrm{~m}$ in 140 . s? Dragging: d. A 854 W tractor can drag a $780 . \mathrm{kg}$ mass 180 m in what time if the coefficient of friction is 0.160 ? d. A 720 . W winch drags a 1340 kg car with a coefficient of friction of 0.850 how far in 45.0 s ? d. A team of dogs can put out 1350 W of power. If the coefficient of friction between the sled and the ice is 0.120 , what mass can they drag 50.0 m in $120 . \mathrm{s}$? d. A conveyor belt is operated by a 420 . W motor. If it is supposed to move a 15.0 kg box 21.0 m in 17.0 s , what must be the coefficient of friction between it and the underlying surface? d. A tractor must be able to drag 1520 kg of $\operatorname{logs} 460 . \mathrm{m}$ across the ground where the coefficient of friction is 0.650 in 63.0 s . What must be the power minimum power output of the tractor?

Practice 5.0 - Work and Energy

Work: $\mathrm{W}=\mathrm{Fd}$

1. How much work does Fred do exerting 45.0 N to lift a box 3.20 m ? (144 J)
2. How much work does Adair lifting a 12.0 N box up 5.00 m ? (60.0 J)
3. An alkaline AA battery contains 9360 J of energy. If it takes 68.0 N of force to drag a heavy box across the floor, how far could the energy in a AA battery drag the box? (138 m)
4. What vertical distance will 64.0 J of work lift a box that weighs 41.0 N ? (1.56 m)
5. Katherine moves a box 7.20 m doing 5.00 J of work. What is the frictional force? $(0.694 \mathrm{~N})$
6. What force exerted for 4.10 m does 117 J of work? $(28.5 \mathrm{~N})$

Potential Energy: $\mathbf{P E}=\mathbf{m g h}$

7. What is the potential energy of a 5.40 Kg shot put that is 12.0 m in the air? (635 J)
8. What is the potential energy of a 3.20 kg clock weight that has been wound up to a height of 0.680 m ? (21.3 J)
9. What is the mass of a pile driver if it has $13,200 \mathrm{~J}$ of PE when it is 8.30 m in the air? $(162 \mathrm{Kg})$
10. What mass has a PE of 140 . J when it is at an elevation of 0.210 m ? (68.0 kg)
11. An alkaline AA battery contains 9360 J of energy. If I connected it to a 100% efficient winch, how high could it lift a 72.0 kg person? ($13.3 \mathrm{~m}, 43.5$ feet)
12. To what height must a 0.145 Kg baseball rise to get a potential energy of 27.0 J ? (19.0 m)

Kinetic energy: $K E=\mathbf{1 / 2 m v}{ }^{2}$
13.What is the kinetic energy of a 0.145 Kg baseball going $40.0 \mathrm{~m} / \mathrm{s}$? (116 J) (about 90 mph)
14. What is the kinetic energy of a $4.20 \mathrm{~g}(0.0042 \mathrm{~kg})$ bullet going $1120 \mathrm{~m} / \mathrm{s}$? $(2634 \mathrm{~J})$
15.An alkaline AA battery contains 9360 J of energy. If I connected it to a 100% efficient pitching machine, how fast could it pitch a 0.145 kg baseball? ($359 \mathrm{~m} / \mathrm{s}$ or mach 1.05)
16. What speed must a 0.450 Kg hammer have to have a kinetic energy of 57.0 . J ? $(15.9 \mathrm{~m} / \mathrm{s})$
17. A pile driver must develop $14,500 \mathrm{~J}$ of kinetic energy when it is going $13.0 \mathrm{~m} / \mathrm{s}$. What does its mass have to be? (172 kg)
18. A bullet with a speed of $892 \mathrm{~m} / \mathrm{s}$ has a kinetic energy of 2740 J . What is its mass? (0.00689 Kg or 6.89 g)

Conservation of Energy Questions from A5.2

$\begin{aligned} & 24.7 \mathrm{~m} \\ & 27.6 \mathrm{~N} \\ & 11.3 \mathrm{~m} / \mathrm{s} \\ & 7.10 \mathrm{~m} / \mathrm{s} \end{aligned}$	1. a. A 0.145 kg baseball going $22.0 \mathrm{~m} / \mathrm{s}$ straight up goes how high before stopping? b. A baseball pitcher speeds a 0.145 kg ball from rest to $38.0 \mathrm{~m} / \mathrm{s}$ over a distance of 3.80 m . What must be the average force exerted on the ball? (Neglect friction or any change in elevation) c. A 1340 kg car is moving at some speed at an elevation of 5.50 m partway up a hill, and then coasts to a stop at an elevation of 12.0 m . How fast was it going at 5.50 m elevation? (Neglect friction) d. A $150 . \mathrm{kg}$ sled is going $3.40 \mathrm{~m} / \mathrm{s}$ at the top of a 2.50 m tall hill. At the bottom it hits a patch of dirt that exerts a slowing force of $180 . \mathrm{N}$ for 4.20 m . How fast is the sled going after the dirt patch? (Neglect friction)
$\begin{aligned} & 89.7 \mathrm{~N} \\ & 9.44 \mathrm{~m} \\ & 178 \mathrm{~N} \\ & 2.41 \mathrm{~m} \end{aligned}$	2. a. A 0.320 kg hammer is going $8.20 \mathrm{~m} / \mathrm{s}$. What force would stop it in 0.120 m ? b. A 1530 kg car starts at rest and rolls down a hill. At the bottom it is going $13.6 \mathrm{~m} / \mathrm{s}$. How high was the hill? (Neglect friction) c. Mom gives 55.0 kg Tamara a push from rest on her massless sled for a distance of 7.20 m at the top of a 3.80 m tall hill. If she is going $11.0 \mathrm{~m} / \mathrm{s}$ at the bottom of the hill, what force did Mom exert at the top to speed her up? (Neglect friction) d. A 410 kg rollercoaster car going $3.40 \mathrm{~m} / \mathrm{s}$ hits an accelerator that exerts a force of 780 . N to speed up the car over a distance of 14.0 m . The car then rolls up a hill where it is going $4.20 \mathrm{~m} / \mathrm{s}$. What is the height of the hill? (Neglect friction)
$1.71 \mathrm{~m} / \mathrm{s}$ 10.5 m $9.40 \mathrm{~m} / \mathrm{s}$ 3.99 m	3. a. A 5.00 kg pendulum starts from rest 0.150 m above the lowest point. What is its speed when it reaches the lowest point? b. A 0.170 kg ball is sped up with a 5.00 N force straight up from rest a vertical distance of 3.50 m . To what height does it rise above its lowest point before stopping? (Neglect air friction) c. A 0.170 kg ball is sped up with a 5.00 N force straight up from rest a vertical distance of 3.50 m . What is the velocity of the ball when it is a height of 6.00 m above its lowest point? (Neglect friction) d. A 784 kg rollercoaster car is going $7.50 \mathrm{~m} / \mathrm{s}$ at the top of a 2.15 m tall hill. At what height is it when it is going $4.50 \mathrm{~m} / \mathrm{s}$? (Neglect friction)
$\begin{aligned} & 1.40 \mathrm{~N} \\ & 25.6 \mathrm{~m} \\ & 8.91 \mathrm{~m} / \mathrm{s} \\ & 1.81 \mathrm{~m} \end{aligned}$	4. a. What force over 0.180 m exerted on a 0.345 kg air track glider speeds it from rest to $1.21 \mathrm{~m} / \mathrm{s}$? b. A 0.145 kg baseball is popped straight up, and goes 33.5 m in the air before coming back down. What was its initial velocity? (Neglect friction) c. A 1370 kg car going $14.7 \mathrm{~m} / \mathrm{s}$ on a level road strikes a puddle that exerts a retarding force of $5200 . \mathrm{N}$ What is the velocity of the car when it has gone 18.0 m into the puddle? d. A 680 kg Rollercoaster car at rest on top of a 3.50 m tall hill is sped up by a force of 7780 N for a distance of 2.50 m . What is the height of the car when it is going $9.50 \mathrm{~m} / \mathrm{s}$? (Neglect friction)
$9.29 \mathrm{~m} / \mathrm{s}$ 0.219 m 0.592 m $5.07 \mathrm{~m} / \mathrm{s}$	5. a. A 65.0 kg sled starts from rest at the top of a 4.40 m tall hill. What is its speed at the bottom of the hill? (Neglect friction) b. Ferdinand exerts a force of 168 N for a distance of 18.5 m on the level speeding up a 1450 kg car initially at rest. The car then rolls up an incline. How much elevation will the car gain before it stops? (Neglect friction) c. Reginald exerts a force of 195 N for a distance of 35.0 m on the level speeding up a 985 kg car from rest. The car then rolls up an incline. What elevation has the car gained when it has a velocity of $1.50 \mathrm{~m} / \mathrm{s}$? (Neglect friction) d. A 450 kg roller coaster car initially at rest is launched from the top of a 2.30 m tall hill by a 4890 N force exerted over a distance of 3.80 m . What is the speed of the car when it is at the top of a 5.20 m tall hill? (Neglect friction)

\qquad

Conservation of Energy

Total Energy before $=$ Total Energy After
Comes from = Goes to
Assets = Expenditures
$\mathrm{Fd}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}=\mathrm{Fd}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}$

$\mathrm{Fd}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}=\mathrm{Fd}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}$

Example 1

An 890 kg cart rolling $6.2 \mathrm{~m} / \mathrm{s}$ along a level surface hits a 3.6 m long puddle that exerts 3200 N of average retarding force. What is the cart's velocity after this?
3.6 m
(Puddle - Exerts 3200 N of retarding force)

Example 2

Example 3

A 350 kg cart is going $4.6 \mathrm{~m} / \mathrm{s}$. For what distance must a person exert a forward force of 53 N so that when the cart gets to the top of a 1.8 m tall hill it is going $2.4 \mathrm{~m} / \mathrm{s}$?

