Name
Example - Fred O'Dadark exerts 13.2 N on a rope that makes a 32° angle with the ground, sliding a sled 12.5 m along the ground. What work did he do?

$$
\mathbf{W}=\mathbf{F d} \cos \theta
$$

Work and Weight Example - Joe Dadi lifts a 5.0 kg mass 2.5 m . What work does he do?
W
F
d
m
μ

$$
\begin{aligned}
& \mathrm{F}=m g(\text { lifting }) \\
& \mathrm{F}=\mu \mathrm{mg}(\text { dragging }) \\
& \mathrm{W}=\mathrm{Fd}
\end{aligned}
$$

Work and Friction Example - Herman Leftur drags a 150 kg sled 45 m across a lake where the coefficient of kinetic friction is 0.12 . How much work does he do?

W
F
d
m
μ

$$
\begin{aligned}
& \mathrm{F}=m g \text { (lifting }) \\
& \mathrm{F}=\mu \mathrm{mg}(\text { dragging }) \\
& \mathrm{W}=\mathrm{Fd}
\end{aligned}
$$

(Do the whiteboards on the back)

Whiteboards (simple work)

1. Jane Linkfence does 132 J of work lifting a box 1.56 m . What is the weight of the box? (What force did she exert?) (84.6 N)
2. Bob White does $2,345 \mathrm{~J}$ of work pushing a car with a force of 186 N of force. What distance did he push the car? (12.6 m)
3. Helena Handbasket brings a 5.2 kg box down from a 1.45 m tall shelf. What work does she do? (-74 J)

Work and Weight:

4. Paul E. Wannacracker does 2375 J of work	
lifting what mass a height of $1.18 \mathrm{~m} ?(205.4 \mathrm{~kg})$	5. Tubi O' Notubi does 137 J of work lifting a 5.25 kg mass to what height? $(2.66 \mathrm{~m})$

Work and Friction:
6. Hugh Jazz drags a 125 kg sled with a coefficient of kinetic friction of .15 a distance of 34 m . What work does he do?
7. Seymour Butz does 1200 J of work dragging a 32 kg box with a coefficient of kinetic friction of .21 how far?

$$
P=\frac{W}{t} \quad P=F v
$$

A person does 48 J of work in 6.0 s . What is their power output?

My 30. HP van could go $25 \mathrm{~m} / \mathrm{s}$ top speed. What was the force resisting its motion?
1 horsepower $=745.7$ Watts, $1 \mathrm{~kW}=1000$ Watts

Whiteboards:

1. Joe Mama does 613 J of work in 2.13 seconds. What is his power output? $(288 \mathrm{~W})$	2. Ima Wonder can put out 127 W of power. What time will it take her to do 671 J of work? $(5.28 \mathrm{~s})$
3. What work does a 1.5 HP motor do in 1 minute? $(\mathrm{P}=1.5 \times 745.7 \mathrm{~W})$ $(67,113 \mathrm{~J})$	4. Bob N. Frappels slides a box with 43 N of force at a constant speed of $5.3 \mathrm{~m} / \mathrm{s}$. What is his power output? $(230 \mathrm{~W})$

5. Frieda People can put out 430. W of power. With what speed can she push a car if it takes 152 N to make it move at a constant velocity?
($2.83 \mathrm{~m} / \mathrm{s}$)

Work (J): W
Force (N): F
Distance (m): d
Mass (kg): m
Coeff. of Friction: μ
Power (W) : P
Time (s): t

Work (J): W
Force (N): F
Distance (m): d
Mass (kg): m
Coeff. of Friction: μ
Power (W) : P
Time (s): t

Complex Power

Formulas:
$\mathrm{F}=\mathrm{mg} \quad$ (Lifting)
$\mathrm{F}=\mu \mathrm{mg}$ (Dragging)
$\mathrm{P}=\mathrm{W} / \mathrm{t}$ (Power)
$\mathrm{W}=\mathrm{Fd}$ (Work)
Example 1-A 1.2 HP winch can lift a 2350
kg Land Rover up 14.5 m into a tree in what time? $(1 \mathrm{HP}=745.7 \mathrm{~W})(37.18 \approx 370 \mathrm{~s})$

Complex Power

Formulas:

$$
\begin{array}{ll}
\mathrm{F}=\mathrm{mg} & \text { (Lifting) } \\
\mathrm{F}=\mu \mathrm{mg} & \text { (Dragging) } \\
\mathrm{P}=\mathrm{W} / \mathrm{t} & \text { (Power) } \\
\mathrm{W}=\mathrm{Fd} & \text { (Work) }
\end{array}
$$

Example 2 - Gumi Baere drags a 45.1 kg box that has a coefficient of friction between it and the floor of .34 a distance of 16 m in 11.7 seconds. What is her power output? (205.5 $\approx 210 \mathrm{~W}$)
(do the whiteboards on the back)

Whiteboards:
What must be the power rating of a motor if it is to lift a 560 kg
elevator up 3.2 m in 1.5 seconds?
Formulas:
$\mathrm{F}=\mathrm{mg} \quad$ (Lifting)
Work (J): W
Force (N): F
$F=\mu \mathrm{mg}$ (Dragging)
$\mathrm{P}=\mathrm{W} / \mathrm{t}$ (Power)
Distance (m): d
Mass (kg): m
Coeff. of Friction: μ
Power (W) : P
Time (s): t

11700 W

A 0.75 HP winch can lift a car 5.2 m in 37 seconds. What must be the mass of the car? $1 \mathrm{HP}=745.7 \mathrm{~W}$

Formulas:
$\mathrm{F}=\mathrm{mg} \quad$ (Lifting)
$\mathrm{F}=\mu \mathrm{mg}$ (Dragging)
$\mathrm{P}=\mathrm{W} / \mathrm{t}$ (Power)
$\mathrm{W}=\mathrm{Fd}$ (Work)
Distance (m): d
Mass (kg): m
Coeff. of Friction: μ
Power (W) : P
Time (s): t

406 kg

Red Elk leads a dog team that can put out 2.5 kW of power.
They skid a 312 kg sled a distance of 340 m in 93 seconds. What
must be the coefficient of friction? Formulas:
$\mathrm{F}=\mathrm{mg} \quad$ (Lifting)
$\begin{array}{ll}\text { Work }(\mathrm{J}): \mathrm{W} & \mathrm{F}=\mu \mathrm{mg} \text { (Dragging) } \\ \mathrm{P}=\mathrm{W} / \mathrm{t} \text { (Power) }\end{array}$
Force (N): F
$\mathrm{W}=\mathrm{Fd}$ (Work)
Distance (m): d
Mass (kg): m
Coeff. of Friction: μ
Power (W) : P
Time (s): t
0.22

A 150 HP tractor can drag a 350 kg load how far in a minute if
the coefficient of friction between the load and the ground is
0.78. $1 \mathrm{HP}=745.7 \mathrm{~W}$

Formulas:
$\mathrm{F}=\mathrm{mg} \quad$ (Lifting)
$\mathrm{F}=\mu \mathrm{mg}$ (Dragging)
$\mathrm{P}=\mathrm{W} / \mathrm{t}$ (Power)
$\mathrm{W}=\mathrm{Fd}$ (Work)
Force (N) : F
Distance (m): d
$\operatorname{Mass}(\mathrm{kg}): \mathrm{m}$
Coeff. of Friction: μ
Power (W) : P
Time (s): t
2500 m
\qquad
$e=\frac{W_{o}}{W_{i}}=\frac{P_{o}}{P_{i}}$
Example-1 HP motor consumes 815 W of power

- W_{o} - Work output
- W_{i} - Work input
- P_{o} - Power output
$-P_{i}$ - Power input

Whiteboards:

1. A motor consumes 425 J of energy and does 300 J of work. e $=?(0.71$, or $71 \%)$	2. A person is 13\% efficient. How much food energy to do 600. J of work? (4615 J)
3. A 60.\% efficient heater uses 800. J of energy. What is its heat output? (480 J)	4. A car is 25\% efficient. What energy input does it need to climb a 320 m tall hill if its mass is 1200 kg ? (15,052,800 J) (Hint $-\mathrm{Wo}=(\mathrm{F}) \mathrm{d}=(\mathrm{mg}) \mathrm{h})$

\qquad
Energy - the ability to do work.
1.
2.
3.
4.
(Come up with a type of energy that you feel is not nuclear, and I will try to show that it is in class...)

Your example:

Electromagnetic - Energy of photons. (Einstein, big bang)

Potential - Energy of position. Stored energy.
Examples: Gravitational, chemical, springs

Kinetic - Energy of motion.
Examples: Baseballs, hammers

Thermal - Random potential and kinetic energy of molecules and atoms.
Examples: Hot stuff

Gravitational Potential Energy


```
PE=mgh
    PE-gravitational potential energy
    h}\mathrm{ - Change in height
    m}\mathrm{ - Mass
    g-9.8 N/kg on Earth
```

Example: What is the Potential Energy of a 5.0 kg mass 2.1 m from the ground?

Whiteboards:

1. What is the potential energy of a 4.5 kg bowling ball, 13.5 cm above the ground? (5.953 J)
2. Toby Continued lifts a 75.0 kg box doing 1573 J of work. What is the change in height of the box? (2.14 m)
3. Colin Host lifts himself up 15 m doing 9555 J of work. What is his mass? (65 kg)

$\mathrm{KE}=1 / 2 \mathrm{mv}^{2}$
KE - Kinetic energy
V - velocity
m -mass

Example: What is the kinetic energy of a 4.20 g bullet going $965 \mathrm{~m} / \mathrm{s}$? (units?)

Whiteboards:

1. Ex1 - What speed must a . 563 kg hammer move 2 . Ex2 - A European swallow has 2.055 J of to store 34 J of energy? ($11 \mathrm{~m} / \mathrm{s}$) kinetic energy when it is flying at $14.23 \mathrm{~m} / \mathrm{s}$. What is its mass in grams?
($0.020297 \mathrm{~kg}, 20.3 \mathrm{~g}$)
2. Ex3-A 4.0 kg shot is sped up from $6.0 \mathrm{~m} / \mathrm{s}$ to $9.0 \mathrm{~m} / \mathrm{s}$. What is the change in kinetic energy? (90 J) - (calculate two KEs and subtract)
\qquad

Conservation of Energy

Total Energy before $=$ Total Energy After
Comes from = Goes to
Assets = Expenditures
$\mathrm{Fd}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}=\mathrm{Fd}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}$

$\mathrm{Fd}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}=\mathrm{Fd}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}$

Example 1

An 890 kg cart rolling $6.2 \mathrm{~m} / \mathrm{s}$ along a level surface hits a 3.6 m long puddle that exerts 3200 N of average retarding force. What is the cart's velocity after this?
3.6 m
(Puddle - Exerts 3200 N of retarding force)

Example 2

Example 3

A 350 kg cart is going $4.6 \mathrm{~m} / \mathrm{s}$. For what distance must a person exert a forward force of 53 N so that when the cart gets to the top of a 1.8 m tall hill it is going $2.4 \mathrm{~m} / \mathrm{s}$?

