Name

Work - Transfer of energy

Work = (Force)(Distance)

Example - Fred O'Dadark exerts 13.2 N on a rope that makes a 32° angle with the ground, sliding a sled 12.5 m along the ground. What <u>work did he do?</u>

Work and Weight Example – Joe Dadi lifts a 5.0 kg mass 2.5 m. What work does he do?

 $\begin{array}{l} W \\ F \\ d \\ m \\ \mu \\ F = mg \left(lifting \right) \\ F = \mu mg \left(dragging \right) \\ W = Fd \end{array}$

Work and Friction Example – Herman Leftur drags a 150 kg sled 45 m across a lake where the coefficient of kinetic friction is 0.12. How much work does he do?

(Do the whiteboards on the back)

Whiteboards (simple work)	
1. Jane Linkfence does 132 J of work lifting a box	2. Bob White does 2,345 J of work pushing a car
1.56 m. What is the weight of the box? (What	with a force of 186 N of force. What distance did
force did she exert?) (84.6 N)	he push the car? (12.6 m)
3. Helena Handbasket brings a 5.2 kg box <u>down</u> from a 1.45 m tall shelf. What <u>work does she do?</u>	
(-74 J)	

Work and Weight:

4. Paul E. Wannacracker does 2375 J of work	5. Tubi O' Notubi does 137 J of work lifting a 5.25
lifting what mass a height of 1.18 m? (205.4 kg)	kg mass to what height? (2.66 m)

Work and Friction:

6. Hugh Jazz drags a 125 kg sled with a coefficient of kinetic friction of .15 a distance of 34 m. What	7. Seymour Butz does 1200 J of work dragging a 32 kg box with a coefficient of kinetic friction of
work does he do?	.21 how far?

Name_____

$$P = \frac{W}{t} \qquad P = Fv$$

A person does 48 J of work in 6.0 s. What is their power output?

My 30. HP van could go 25 m/s top speed. What was the force resisting its motion? 1 horsepower = 745.7 Watts, 1 kW = 1000 Watts

Whiteboards:

 Joe Mama does 613 J of work in 2.13 seconds. What is his power output? (288 W) 	2. Ima Wonder can put out 127 W of power. What time will it take her to do 671 J of work? (5.28 s)
3. What work does a 1.5 HP motor do in 1 minute? (P = 1.5x745.7 W) (67,113 J)	 4. Bob N. Frappels slides a box with 43 N of force at a constant speed of 5.3 m/s. What is his power output? (230 W)
5. Frieda People can put out 430. W of power. With what speed can she push a car if it takes 152 N to make it move at a constant velocity? (2.83 m/s)	

Work (J): W Force (N): F Distance (m): d Mass (kg): m Coeff. of Friction: µ Power (W) : P Time (s): t

Complex Power

Formulas: F = mg (Lifting) $F = \mu mg$ (Dragging) P = W/t (Power) W = Fd (Work)

Example 1 - A 1.2 HP winch can lift a 2350 kg Land Rover up 14.5 m into a tree in what time? (1 HP = 745.7 W) $(373.18 \approx 370 \text{ s})$

Work (J): W Force (N): F Distance (m): d Mass (kg): M Coeff. of Friction: µ Power (W): P Time (s): t

Complex Power

Formulas: F = mg (Lifting) $F = \mu mg$ (Dragging) P = W/t (Power) W = Fd (Work)

Example 2 - Gumi Baere drags a 45.1 kg box that has a coefficient of friction between it and the floor of .34 a distance of 16 m in 11.7 seconds. What is her power output? $(205.5 \approx 210 \text{ W})$

(do the whiteboards on the back)

Whiteboards:

```
What must be the power rating of a motor if it is to lift a 560 kg
   elevator up 3.2 m in 1.5 seconds?
                                                      Formulas:
                                                      F = mg (Lifting)
                                                     F = \mu mg (Dragging)
   Work (J): W
                                                      P = W/t (Power)
   Force (N): F
                                                      W = Fd (Work)
Distance (m): d
  Mass (kg): M
Coeff. of Friction: \mu
 Power (W): P
     Time (s): t
 11700 \mathrm{W}
   A 0.75 HP winch can lift a car 5.2 m in 37 seconds. What must
   be the mass of the car? 1 HP = 745.7 W
                                                            Formulas:
                                                            F = mg (Lifting)
                                                            F = \mu mg (Dragging)
   Work (J): W
                                                            P = W/t (Power)
   Force (N): F
                                                            W = Fd (Work)
Distance (m): d
   Mass (kg): M
Coeff. of Friction: \mu
  Power (W) : P
      Time (s): t
 406 kg
 Red Elk leads a dog team that can put out 2.5 kW of power.
 They skid a 312 kg sled a distance of 340 m in 93 seconds. What
 must be the coefficient of friction?
                                                         Formulas:
                                                         F = mg (Lifting)
                                                        F = \mu mg (Dragging)
P = W/t (Power)
   Work (J): W
   Force (N): F
                                                         W = Fd (Work)
Distance (m): d
  Mass (kg): M
Coeff. of Friction: \mu
 Power (W): P
     Time (s): t
 0.22
   A 150 HP tractor can drag a 350 kg load how far in a minute if
   the coefficient of friction between the load and the ground is
   0.78. 1 HP = 745.7 W
                                                                Formulas:
                                                               F = mg (Lifting)
                                                               F = \mu mg (Dragging)
   Work (J): W
                                                               P = W/t (Power)
   Force (N): F
                                                                W = Fd (Work)
Distance (m): d
   Mass (kg): M
Coeff. of Friction: \mu
  Power (W): P
      Time (s): t
 2500\,\mathrm{m}
```

Noteguide for Efficiency - Videos 5D

Name_

```
e = \frac{W_o}{W_i} = \frac{P_o}{P_i}
                \cdot W_o - Work output
                \cdot W_i - Work input
                •Po- Power output
                \cdot P_i - Power input
                   5
     33 Units lost throw
exhaust
100 Units (gasoline in fuel tank)
     29 Units lost through cylinder cooling
                      6 Units lost by pumping combustion ai
                                     3 Units lost to piston ring friction
                                         4 Units lost to other engine friction
                   38 Units:
                   indicated
horsepower
of engine
                                                                            Accessorie
                                                    25 Units
                                                 usable
horsepower
                                                                         Propelling car
```

Whiteboards:

Whiteboards.	
1. A motor consumes 425 J of energy and does 300	2. A person is 13% efficient. How much food
J of work. $e = ? (0.71, or 71\%)$	energy to do 600. J of work? (4615 J)
3. A 60.% efficient heater uses 800. J of energy.	4. A car is 25% efficient. What energy input does
what is its neat output? (480 J)	It need to climb a 320 m tail hill if its mass is 1200 h_{22} (15.052.800 l) (Hint We (E)d (math)
	kg? (15,052,800 J) (Hint - W0 = (F)d = (mg)n)

Example - 1 HP motor consumes 815 W of power

Noteguide for Energy - Videos 5E

Name_____

Energy - the ability to do work.

1. 2. 3.

4.

(Come up with a type of energy that you feel is not nuclear, and I will try to show that it is in class...)

Your example:

<u>Electromagnetic</u> – Energy of photons. (Einstein, big bang)

<u>**Potential**</u> - Energy of position. Stored energy. Examples: Gravitational, chemical, springs

<u>**Kinetic</u>** - Energy of motion. Examples: Baseballs, hammers</u>

Thermal - Random potential and kinetic energy of molecules and atoms. Examples: Hot stuff

Gravitational Potential Energy

Example: What is the Potential Energy of a 5.0 kg mass 2.1 m from the ground?

Whiteboards:	
1. What is the potential energy of a 4.5 kg bowling	2. Toby Continued lifts a 75.0 kg box doing 1573 J
ball, 13.5 cm above the ground? (5.953 J)	of work. What is the change in height of the box?
	(2.14 m)
3. Colin Host lifts himself up 15 m doing 9555 J of	work. What is his mass? (65 kg)
······································	(00

Noteguide for Kinetic Energy - Videos 5G

Name

Example: What is the kinetic energy of a 4.20 g bullet going 965 m/s? (units?)

Whiteboards:

1. Ex1 - What speed must a .563 kg hammer move	2. Ex2 - A European swallow has 2.055 J of
to store 34 J of energy? (11 m/s)	kinetic energy when it is flying at 14.23 m/s.
	What is its mass in grams?
	(0.020297 kg, 20.3 g)
	(0.0202) / Kg, 20.5 g)
3. Ex3 - A 4.0 kg shot is sped up from 6.0 m/s to 9.0 m/s) m/s. What is the change in kinetic energy?
(90 J) - (calculate two KEs and subtract)	

Name

Conservation of Energy

Total Energy before = Total Energy After Comes from = Goes to Assets = Expenditures $Fd+mgh+ \frac{1}{2}mv^2 = Fd+mgh + \frac{1}{2}mv^2$

(Puddle - Exerts 3200 N of retarding force)

Example 3

A 0.124 kg pine cone falls 45.0 m from a tree. It is going 22.0 m/s when it strikes the ground. What is the average force of air friction that acts on the pine cone as it falls?