P4.2 Vertical Acceleration Questions

Use the convention that up is positive. The assessments will have each only one problem with kinematics.

+96.1 N +44.9 N $+10.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ +85.0 N -35.1 m	1. A 6.32 kg flour baby hangs on a cord. a. What is the tension in the cord if the flour baby is accelerating upwards at $5.40 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? b. If the flour baby is accelerating downwards at $2.70 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, what is the tension in the cord? c. If the tension in the cord is $130 . \mathrm{N}$, what is the acceleration of the flour baby? d. If the flour baby is moving downwards at $5.50 \mathrm{~m} / \mathrm{s}$, and stops in 1.51 s , what was the tension in the cord during this time? e. There is a tension in the cord of 40.0 N . If the flour baby is initially at rest, what is the displacement of the flour baby 4.50 s later?
$\begin{aligned} & +32.5 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & +19.5 \mathrm{~N} \\ & +9.82 \mathrm{~N} \\ & +3.60 \mathrm{~N} \\ & 1.20 \mathrm{~s} \end{aligned}$	2. A 1.30 kg giant gerbil hangs on a cable. a. If the upward force exerted by the cable is 55.0 N , what is the acceleration of the giant gerbil? b. What tension in the cable would cause the giant gerbil to accelerate upwards at $5.20 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? c. What is the tension in the cable if the giant gerbil has a downward acceleration of $2.26 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? d. The giant gerbil accelerates from rest to a downward velocity of $9.56 \mathrm{~m} / \mathrm{s}$ in a distance of 6.50 m . What was the tension in the cable as it was doing this? e. There is a tension of 32.0 N in the cable. In what time can the giant gerbil change its velocity from rest to $17.8 \mathrm{~m} / \mathrm{s}$ upwards?
$\begin{aligned} & \hline+29.7 \mathrm{~N} \\ & +5.58 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & +84.6 \mathrm{~N} \\ & +28.4 \mathrm{~N} \\ & +6.37 \mathrm{~m} / \mathrm{s} \end{aligned}$	3. A 5.20 kg baby koala hangs from a rope. a. What is the tension in the rope if the koala is accelerating downwards at $4.10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? b. If the tension in the rope is 80.0 N , what is the acceleration of the koala? c. What tension in the rope would effect an upward acceleration of $6.45 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? d. From rest, the koala displaces itself downward 7.20 m in 1.82 s . What is the tension in the rope as this is happening? e. If there is a tension of 58.0 N in the rope, what is the final velocity of the koala when it has risen 15.0 m if the koala started from rest?
$\begin{aligned} & -2.07 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & +8.60 \mathrm{~N} \\ & +53.9 \mathrm{~N} \\ & +37.4 \mathrm{~m} / \mathrm{s} \\ & +7.17 \mathrm{~N} \end{aligned}$	4. A 2.20 kg giant cockroach rappels on a very strong string. a. What is the acceleration of the cockroach if the tension in the string is 17.0 N ? b. If the cockroach is accelerating downwards at $5.90 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, what is the tension in the string? c. What tension in the string would cause an upward acceleration of $14.7 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? d. If the tension in the string is 38.0 N , and the cockroach is initially at rest, what is the final velocity of the cockroach after 5.00 s ? e. The cockroach is moving upwards at $6.45 \mathrm{~m} / \mathrm{s}$ and stops in a distance of 3.18 m . What is the tension in the string as he is stopping?
$\begin{aligned} & +55.9 \mathrm{~N} \\ & -3.50 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\ & +16.7 \mathrm{~N} \\ & -11.6 \mathrm{~m} \\ & +72.3 \mathrm{~N} \end{aligned}$	5. A 4.60 kg gourd hangs on a cord. a. What is the tension in the cord if the gourd is accelerating upwards at $2.35 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? b. What is the acceleration of the gourd if the tension in the cord is 29.0 N ? c. If the gourd is accelerating downwards at $6.19 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, what is the tension in the cord? d. If the gourd starts from rest, and the tension in the cord is 28.0 N , what is the displacement of the gourd in 2.50 s ? e. If the gourd accelerates from an upward velocity of $1.12 \mathrm{~m} / \mathrm{s}$ to $6.57 \mathrm{~m} / \mathrm{s}$ in a distance of 3.54 m , what is the tension in the cord?

