$\mathbf{F}=\mathbf{m a}:$

1. What net force would accelerate a 2.50 kg mass at a rate of $27.6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
2. What mass accelerates at $6.50 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ when a force of 87.0 N acts on it?
3. What is the acceleration of a 9.10 kg mass if there is a net force of 3.50 N acting on it?
(weight) $\mathbf{F}_{\mathrm{g}}=\mathbf{m g}:($ Use $\mathrm{g}=9.80 \mathrm{~N} / \mathrm{kg}$ - round to three digits total)
4. What is the weight on earth of a 60.0 kg boy named Brennen?
5. What mass on earth weighs 730. N?
6. A 45.0 kg mass weighs 73.0 N on the moon. What is the " g " (The gravitational field strength) of the moon?

Kinematics then $\mathbf{F}=\mathbf{m a}$:

7. What net force would accelerate a 6.80 kg mass from rest a distance of 24.0 m in 5.00 s ?
8. A 72.0 kg mass accelerates from $5.70 \mathrm{~m} / \mathrm{s}$ to $18.0 \mathrm{~m} / \mathrm{s}$ in 4.00 s . What net force acted?
9. A 12.0 kg mass accelerates from $6.20 \mathrm{~m} / \mathrm{s}$ to $15.0 \mathrm{~m} / \mathrm{s}$ over a distance of 21.0 m . What net force acted?

$\mathbf{F}=\mathbf{m a}$ then Kinematics:

10. A 24.0 N net force acts on a 8.00 kg mass. If it accelerates from rest, what is the final velocity in 14.0 s ?
11. A net force of 26.0 N acts on a 3.80 kg mass. After what time would the mass reach a speed of $27.0 \mathrm{~m} / \mathrm{s}$ from rest?
12. A net force of 36.0 N acts on a 8.50 kg mass. What will be its displacement from rest if it accelerates for 4.10 s?
