Physics - Fall Mock Final

Name \qquad
Show your work, circle and label your answers with units.

Page 1 - Speed and Acceleration

1. A baseball is going $35.0 \mathrm{~m} / \mathrm{s}$. What distance does it travel in 0.522 s ? $(18.3 \mathrm{~m})$
2. A car goes 45 m in 8.00 s . What is its velocity? $(5.63 \mathrm{~m} / \mathrm{s})$
3. Convert $13.0 \mathrm{~m} / \mathrm{s}$ to feet $/ \mathrm{sec}$ ond ($42.7 \mathrm{f} / \mathrm{s}$)
4. A car going $12.0 \mathrm{~m} / \mathrm{s}$ accelerates at $1.20 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 3.2 s . What is its final velocity? $(15.8 \mathrm{~m} / \mathrm{s})$
5. A car going $24.0 \mathrm{~m} / \mathrm{s}$ is going $17.0 \mathrm{~m} / \mathrm{s} 11.0$ seconds later. What was its acceleration? $(-0.636 \mathrm{~m} / \mathrm{s} / \mathrm{s})$

Page 2 - Linear Kinematics and Free Fall

1. A moving giant lizard stops in 3.10 m in 1.20 s . What was its acceleration? $(-4.31 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
2. A car is going $26.0 \mathrm{~m} / \mathrm{s}$ after traveling 145 m in 7.80 s . What was its initial velocity? ($11.2 \mathrm{~m} / \mathrm{s}$)
3. A runner accelerates uniformly from $1.30 \mathrm{~m} / \mathrm{s}$ to $4.70 \mathrm{~m} / \mathrm{s}$ with an acceleration of $5.20 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What was their displacement? $(1.96 \mathrm{~m})$

4-5. An air rocket leaves the ground going straight up with a velocity and reaches a height of $\mathbf{3 7 . 0}$ m before coming back down.
Neglect air friction and use $g=9.8 \mathbf{m} / \mathrm{s} / \mathrm{s}$
4. What was its launch velocity? ($26.9 \mathrm{~m} / \mathrm{s}$)
5. What total time was it in the air? (5.50 s)

Page 3 - Projectile Motion

Ignore air friction, use the convention that down is negative, and use $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.

1-3: A ball is projected sideways from the top of a 12.0 m tall cliff. It lands having traveled a

 horizontal distance of $\mathbf{2 3 . 0} \mathbf{~ m}$.1 . What time is the ball in the air? (1.56 s)
2. What horizontal velocity did it have?
($14.7 \mathrm{~m} / \mathrm{s}$)
3. Draw a picture of its velocity of impact and express it as an angle and a magnitude.
($21.2 \mathrm{~m} / \mathrm{s} 46.2^{\circ}$ below horiz.)

4-5: A ball is launched at $26.0 \mathrm{~m} / \mathrm{s}$ at an angle of 65.0° above horizontal on a level field. 4. What time is it in the air? (4.81 s)
5. What horizontal distance does it travel before striking the ground again (52.8 m)

Page 4 - Dynamics

1. A 13.0 kg mass accelerates along a frictionless track covering 45.0 m of distance in 2.30 s from rest. What net force was acting on the mass? (221.2 N)

2-3: A 2.50 kg mass hangs on a cord.

Use the convention that $\underline{u p}$ is positive.
2. If the tension in the cord is 12.0 N , what is the acceleration of the mass? $(-5.00 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
3. If the mass is accelerating downwards at $4.20 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, what is the tension in the cord? $(14.0 \mathrm{~N})$

4-5: There is a coefficient of kinetic friction of 0.150 between a 8.00 kg block of wood and the level floor.

Use the convention that right is positive.
4. If there is a force of 9.20 N to the right, and the block is sliding to the right, what is the acceleration? Is it speeding up or slowing down? (Answer both questions) $(-0.320 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, decelerating, or slowing down)
5. What in what direction force is needed to make it slide and accelerate to the right at $4.90 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
(Answer both questions) (51.0 N to the right)

