Write down the laws:
1

2

3

$\mathrm{F}=\mathrm{ma}$

Example: What force causes a 4.0 kg object to accelerate at $6.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
(Write down as well the base units of a Newton)

Example: A 2.1 kg hammer accelerates from rest under the influence of a net force of 120 N . What is its final velocity if the force is exerted over a distance of 78 cm

Try these example problems. If you can't get the answer on your own watch the video. Use your calculator.

1. What unbalanced force causes a 892 g object to accelerate at $-9.81 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? $(-8.75 \mathrm{~N})$	2. What is the acceleration of a 12 kg object if you exert 37 N of unbalanced force on it? $(3.1 \mathrm{~m} / \mathrm{s} / \mathrm{s})$

Mass

Name

Weight

Example: What is the weight of a 5.0 kg mass on earth?

Try these example problems. Don't freak out if you can't immediately get the answer. We will work on these as a group in class. They are solved in the linked videos that follow the main one

1. What is the weight of a 20.3 gram European Swallow? (0.199 N)
2. What is the mass of an object that weighs 582 N on earth? (59.3 kg)
3. A 62.0 kg person weighs 101 N on the moon. What is the moon's "g"? ($1.63 \mathrm{~N} / \mathrm{kg}$)

Steps:
1.
2.
3.

Try these example problems. If you don't get the answer, watch the video to see how.

Find the acceleration:	Find the acceleration: 2.
Find the other force: 3. $\mathrm{a}=0.12 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ to the right $(-13 \mathrm{~N})$	

Example 1

A 5.0 kg mass hangs on a string with a tension of 65 N . What is the acceleration of the mass?

Example 2

A 510 kg elevator accelerates downwards at $1.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the tension in the cable
 supporting it?

Example 3

A 1350 kg elevator moving downwards at $5.31 \mathrm{~m} / \mathrm{s}$ arrests its motion in 2.10 seconds. What is the tension in the elevator as it stops?
(Do the whiteboards on the back)

Try to do these without looking at the video, but if you get stuck, watch the video until you get unstuck, and do it from there.

1. A 314 kg elevator accelerates upward $4.7 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the tension in the cable supporting it? $(4553 \mathrm{~N})$	2. A 314 kg elevator accelerates downward at 2.7 m/s/s. What is the tension in the cable supporting it? $(2229.4 \mathrm{~N})$

Friction - Force needed to drag one object across another. (At a constant velocity):

Not supposed to depend on:

Table from the book:

Surfaces	Coefficient of Static Friction, μ_{s}	Coefficient of Kinetic Friction, μ_{k}
Wood on wood	0.4	0.2
lee on ice	0.1	0.03
Metal on metal (lubricated)	0.15	0.07
Steel on steel (unlubricated)	0.7	0.6
Rubber on dry concrete	1.0	0.8
Rubber on wet concrete	0.7	0.5
Rubber on other solid surfaces	1-4	1
Teflon ${ }^{\text {a }}$ on Teflon in air	0.04	0.04
Teflon on steel in air	0.04	0.04
Lubricated ball bearings	<0.01	<0.01
Synovial joints (in human limbs)	0.01	0.01

$\underline{\text { Kinetic Friction - Force needed to keep it going at a constant velocity. (AKA Kinetic friction) }}$ $\mathrm{F}_{\mathrm{F}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{N}}$
Always in opposition to velocity (direction it is sliding)
$\underline{\text { Static Friction - Force needed to } \underline{\text { start }} \text { motion. }}$
$\mathrm{F}_{\mathrm{F}} \leq \mu_{\mathrm{S}} \mathrm{F}_{\mathrm{N}}$
Keeps the object from moving if it can.
Only relevant when object is stationary.
Always in opposition to applied force.
Calculated value is a maximum

TABLE 4-2 Coefficients of Friction ${ }^{\text { }}$

Surfaces	Coefficient of Static Friction, $\boldsymbol{\mu}_{\mathrm{s}}$	Coefficient of Kinetic Friction, $\boldsymbol{\mu}_{\mathrm{k}}$
Wood on wood	0.4	0.2
Ice on ice	0.1	0.03
Metal on metal (lubricated)	0.15	0.07
Steel on steel (unlubricated)	0.7	0.6
Rubber on dry concrete	1.0	0.8
Rubber on wet concrete	0.7	0.5
Rubber on other solid surfaces	$1-4$	1
Teflon on Teflon in air	0.04	0.04
Teflon on steel in air	0.04	0.04
Lubricated ball bearings	<0.01	<0.01
Synovial joints (in human limbs)	0.01	0.01
Values are approximate and are intended only as a guide.		

Try these Whiteboards - watch the video if you can't get them.

1. What force is needed to start to slide a 45.0 block of rubber across dry concrete? (441 N)
2. What force is needed to continue to slide a 32.0 block of wood across a wood floor? (62.7 N)
3. What force is needed to begin sliding a 2350 kg car across wet concrete?
($16,121 \mathrm{~N}$)
4. You have a 2.1 kg block of plastic and it takes you 8.65 N of force to slide it at a constant speed across your Formica table. What is the coefficient of friction? (0.42)

Sample Problem: A 5.00 kg block rests on a level table where there is a static coefficient of friction of $\mathbf{0 . 4 7 0}$, and a dynamic of $\mathbf{0 . 1 7 0}$.
a) What are the dynamic and maximum static forces of friction?
b) If it is at rest and you exert a force of 12.0 N sideways on it what happens?
c) If it is at rest and you exert a force of 35.0 N to the right on it, what is the acceleration of the block? Is the block accelerating (speeding up) or decelerating (slowing down)?
d) If it is sliding to the right and you exert a force of 7.50 N to the left, what is the acceleration of the block? Is the block accelerating (speeding up) or decelerating (slowing down)?
e) What force is required to make the block slide to the right and accelerate to the right at $6.70 \mathrm{~m} / \mathrm{s} / \mathrm{s}$? Is the force to the right or the left?
f) If it is sliding to the right, but decelerating at $0.950 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, what force is acting on the block? Is the force to the right or the left?

