\qquad

Make a guess, then watch the video:
Come up with a precise set of directions for getting from Point A to Point B
Each square represents 1 m of distance

Write these directions:
Vector Component:

Angle Magnitude:
\qquad

Try to write these AM vectors as Component Vectors. Decide which side is x and which is y , which are negative, which are positive. Write it like I showed you in the previous part. Watch the videos to check your answers.

1.	2.
	(Draw a cartoon here)

Finding the lengths of the sides
(Get your calculator out and calculate the things I do)

Step 1 - Draw
Tail to tip
Use Arrows

Step 2 -
Find the lengths:
adj $=$ hyp $\operatorname{Cos} \theta$
opp $=$ hyp $\operatorname{Sin} \theta$
Step 3
Decide x and $y,+$ and -
Step 4
Write the vector down

Try this one yourself:

1. Draw the Components

2. Figure the components with \sin and \cos
3. Write the answer in VC Notation

[^0]\qquad

$\begin{array}{ll}\mathrm{A}: & 2.3 \mathrm{mx}+3.4 \mathrm{my} \\ \mathrm{B}: & 7.4 \mathrm{mx}+1.2 \mathrm{my} \\ \mathrm{A}+\mathrm{B}= & 9.7 \mathrm{mx}+4.6 \mathrm{~m} \mathrm{y}\end{array}$

Try these example problems. Don't freak out if you can't immediately get the answer. We will work on these as a group in class. They are solved in the linked videos that follow the main one

Write down step by step directions:

Given this VC Vector: $5.10 \mathrm{mx}+-1.70 \mathrm{~m} y$, Draw the AM vector

Try these example problems. Don't freak out if you can't immediately get the answer. We will work on these as a group in class. They are solved in the linked videos that follow the main one. Answers to these are on the back of this sheet. Be sure you can make the drawings correctly with the arrows in the right direction.

1. Draw this vector, and find its magnitude and the angle it forms with the x -axis: $3.4 \mathrm{mx}+2.0 \mathrm{my}$	2. Draw this vector, and find its magnitude and the angle it forms with the x -axis: $-22 \mathrm{~m} / \mathrm{sx}+15 \mathrm{~m} / \mathrm{s} \mathrm{y}$
3. Draw this vector, and find its magnitude and the angle it forms with the x -axis:	4. Draw this vector, and find its magnitude and the angle it forms with the x-axis:
$9.00 \mathrm{Nx}+-15.0 \mathrm{Ny}$	$15.00 \mathrm{~m} / \mathrm{s} / \mathrm{s} \mathrm{x}+-9.80 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ y

Answers to whiteboards - be sure you have drawn the arrows the right way. Don't worry if the videos do something with a trig angle - that is not a thing anymore
(20.9

Write down the steps for this:

Red Elk runs off a 3.8 m tall cliff with a horizontal velocity of $4.2 \mathrm{~m} / \mathrm{s}$, and does a faceplant in a snow drift.
a. What time is he in the air?
b. How far out does he land?
c. What is his velocity of impact with the snow drift?

Red Elk throws a ball with a purely horizontal velocity from the roof of a building that is 21 m tall. The ball lands 17 m from the base of the building.
a) What time is the ball in the air? b) What is the final vertical velocity?
c) What is the horizontal velocity?
d) What is the velocity of impact in terms of an angle and a magnitude?

(Do the back side too)

Red Elk runs at $4.5 \mathrm{~m} / \mathrm{s}$ horizontally from the top of a cliff and lands in the water 6.2 m from the base of the cliff.
a) What time is he in the air? b) What is his final vertical velocity?
c) How tall is the cliff?
d) What is the velocity of impact in terms of an angle and a magnitude?

Red Elk hits a golf ball at a speed of $41.3 \mathrm{~m} / \mathrm{s}$ at an angle of 78.2° above the horizontal. Assume that the ground is level, and ignore air friction.
a) What time is the ball in the air?
b) What is the horizontal distance that the ball goes before striking the ground?
c) What is the speed at the highest point on the ball's trajectory, and what is the greatest height?

Use the range equation to find these ranges for the velocities and launch angles. Write down what you put into your calculator. Take the time to see if you can get the same answer with your own calculator.

Velocity $=12.0 \mathrm{~m} / \mathrm{s}$, Launch Angle $=52.0^{\circ}$ Range $=$ \qquad

Velocity $=21.0 \mathrm{~m} / \mathrm{s}$, Launch Angle $=67.0^{\circ}$ Range $=$ \qquad

Velocity $=31.0 \mathrm{~m} / \mathrm{s}$, Launch Angle $=32.0^{\circ}$ Range $=$

Use the range equation to find the proper launch angles for the following velocities and ranges. Write down what you put into your calculator. Take the time to see if you can get the same answer with your own calculator.

Velocity $=24.0 \mathrm{~m} / \mathrm{s}$, Range $=45.7 \mathrm{~m}$, Launch Angles $=$ \qquad and \qquad degrees

Velocity $=13.0 \mathrm{~m} / \mathrm{s}$, Range $=9.00 \mathrm{~m}$, Launch Angles $=$ \qquad and \qquad degrees
\qquad and \qquad degrees
\qquad

$$
\text { Range }=\frac{v^{2}}{g} \sin (2 \theta)
$$

$$
\mathrm{V}=32.1 \mathrm{~m} / \mathrm{s}
$$

$$
\text { angle }=38.0^{\circ}
$$

Solve for θ :

How to find angle to hit 90.0 m :

How to find angle hit 200. m:

Example 1- Pointed Straight
Across

Example 2:

A boat with a velocity (in still water) of $1.49 \mathrm{~m} / \mathrm{s}$ points straight across river with a current of $\mathbf{0 . 7 5 0}$ m / s In doing this it is carried downstream $\mathbf{2 5 . 2} \mathbf{~ m}$.

1. What time does it take to cross?
2. How wide is the river?
3. What is the velocity (in angle magnitude notation) of the boat as it moves across the river? Draw a picture of the velocity.
(Do the example on the back side too)

Example 3:

A boat crosses a 62.0 m wide river in 45.2 s by pointing straight across. In so doing, it is carried downstream a distance of 17.5 m

1. What is the velocity of the boat with respect to the water?
2. What is the speed of the current?
3. What is the velocity (in angle magnitude notation) of the boat as it moves across the river? Draw a picture of the velocity.

[^0]: $-11.8 \mathrm{~m} / \mathrm{sx}+19.7 \mathrm{~m} / \mathrm{s} \mathrm{y}$ (the x and the y should have little ^ hats on them ; -)

