Red Elk shoots an air rocket at a speed of $\mathbf{2 5 . 0} \mathbf{~ m} / \mathrm{s}$ at an angle of 57.0° above the horizontal on a very level field.
A) Break the velocity vector into components. (These become your initial velocities for x and y) Set up your horizontal/vertical table, fill it with known quantities, and solve for everything you don't know. (You know horizontally: both velocities and the acceleration, and vertically: the displacement, both velocities, and the acceleration) $(13.616 \mathrm{~m} / \mathrm{s} x+20.967 \mathrm{~m} / \mathrm{s}$ y)

B) What are the initial horizontal and vertical velocity components? $(13.616 \mathrm{~m} / \mathrm{s} x+20.967 \mathrm{~m} / \mathrm{s})$	C) What time is the rocket in the air? ${ }_{(4.27 \mathrm{~s})}$	D) How far does the rocket go before hitting the ground? $(58.2 \mathrm{~m})$
E) What is the greatest height the rocket reaches? $(22.4 \mathrm{~m})$	F) What is the speed of the rocket at the highest point? $(13.6 \mathrm{~ms})$	

Red Elk kicks a ball at a speed of $28.0 \mathrm{~m} / \mathrm{s}$ at an angle of 34.0° above the horizontal on a very level field.

1. What time is the ball in the air? ${ }_{(3.20 \mathrm{~s})}$
2. What horizontal distance does it travel before hitting the ground again? (74.2 m)
3. What is the greatest height the ball reaches? What is its speed at this height? ($12.5 \mathrm{~m}, 23.2 \mathrm{~m} / \mathrm{s}$)

Use the range equation to find these ranges for the velocities and launch angles. Write down what you put into your calculator:

Velocity $=32.0 \mathrm{~m} / \mathrm{s}$, Launch Angle $=47.0^{\circ}$ Range $=$ \qquad (104 m)

Velocity $=11.0 \mathrm{~m} / \mathrm{s}$, Launch Angle $=26.0^{\circ}$ Range $=$ \qquad (9.73 m)

Use the range equation to find the proper launch angles for the following velocities and ranges. Write down what you put into your calculator:

Velocity $=29.0 \mathrm{~m} / \mathrm{s}$, Range $=32.0 \mathrm{~m}$, Launch Angles $=$ \qquad and \qquad degrees (10.9 ${ }^{\circ}$ and 79.1°)

Velocity $=12.0 \mathrm{~m} / \mathrm{s}$, Range $=14.5 \mathrm{~m}$, Launch Angles $=$ \qquad and \qquad degrees

