${f B}$. Find these Vector Components and write each vector as a proper component vector:

#4

#5

-179 m x + -167 m y:9# -16.3 m x + 14.7 m y#2: #4: 289 m x + -234 m y

 ${f C}$. Add these component vectors:

A: $12 \text{ m x} + 34 \text{ m y}$	A: $1.20 \text{ m x} + 3.10 \text{ m y}$		
B: $16 \text{ m x} + 9.0 \text{ m y}$	B: $-5.30 \text{ m x} + 1.30 \text{ m y}$		
A+ B:	A+ B:		
#a 28 m x + 43 m y	-4.1 m x + 4.4 m y		
A: $3.60 \text{ m x} + -5.60 \text{ m y}$	A: $12.6 \text{ m x} + 58.1 \text{ m y}$		
B: $12.5 \text{ m x} + 8.10 \text{ m y}$	B: $16.5 \text{ m x} + -96.0 \text{ m y}$		
A+ B:	A+ B:		
#c	#d		
16.1 m x + 2.50 m y	29.1 m x + -37.9 m y		

D. Draw these vectors as Angle Magnitude vectors. The vector should be an arrow, and calculate and label its magnitude (hypotenuse) and the angle:

1)
$$6.00 \text{ m x} + 8.00 \text{ m y}$$

2)
$$-4.50 \text{ m x} + 6.40 \text{ m y}$$

3)
$$-5.12 \text{ m x} + -3.90 \text{ m y}$$

1) 10.0 m right and up 53.1° above the x axis, 2) 7.82 m left and up at 54.9° above the x axis 3) 6.44 m left and down 37.3° below the x axis, 4) 67.4 m right and down 33.3° below the x axis

E1: Adding two Angle Magnitude Vectors (Just like the test...)

Find the Components of these two vectors:

Carry three decimal places in your calculations.

Mag. = $12.0 \text{ m}, \ \theta = 21.0^{\circ}$

- 1 = _____y
- 2 = x + y

Mag. = $8.00 \text{ m}, \ \theta = 17.0^{\circ}$

Add the Two Vectors: $1+2 = \underline{\qquad \qquad } x + \underline{\qquad \qquad } y$

Draw a picture of the resultant vector with its tail on the origin, find its magnitude, and label an angle indicating its direction:

E2: Adding two Angle Magnitude Vectors

Find the Components of these two vectors:

Carry three decimal places in your calculations.

Mag. =
$$42.0 \text{ m}, \theta = 12^{\circ}$$

Add the Two Vectors:
$$1+2 = \underline{\qquad \qquad } x + \underline{\qquad \qquad } y$$

Draw a picture of the resultant vector with its tail on the origin, find its magnitude, and label an angle indicating its direction:

mag	angle	x	У	
18	223	-13.164	-12.276	
42	348	41.082	-8.732	
		27.918	-21.008	
		mag	34.9	m
		anglex	-37.0	0

34.9 m, right and down at 37° below the x axis