Ignore air friction and use the convention that down is negative. $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

1. An air rocket is launched from the ground straight up, and on the way down is strikes a light tower that is 23.0 m tall with a downward velocity of $11.0 \mathrm{~m} / \mathrm{s}$. What was its initial upward velocity?

2. An air rocket is launched straight up at $31.0 \mathrm{~m} / \mathrm{s}$. What time elapses between the launch, and the point on the way down where it has a downward velocity of $17.0 \mathrm{~m} / \mathrm{s}$?

3. An air rocket is launched straight upwards at $26.0 \mathrm{~m} / \mathrm{s}$. What is its velocity at a time of 4.80 s ?

4. An air rocket is launched straight up with a speed of $\mathbf{2 4 . 0} \mathbf{~ m} / \mathrm{s}$ and strikes a 18.0 m tall light tower on the way down. What is the velocity of impact with the light tower?

