1. A car going $11.0 \mathrm{~m} / \mathrm{s}$ accelerates at $0.890 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 15.0 s . How far does it go in this time?

2. A runner accelerates from rest at $3.40 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ to a final velocity of $9.40 \mathrm{~m} / \mathrm{s}$. What distance do they go?

3. A tennis ball cannon rolls to a stop covering a distance of 3.80 m in 7.20 s . What was its initial velocity?

4. What is the acceleration of a car that accelerates from $17.0 \mathrm{~m} / \mathrm{s}$ to $11.0 \mathrm{~m} / \mathrm{s}$ in 3.40 s ?

X	$=$
V_{i}	$=$
V_{f}	$=$
a	$=$
t	$=$

5. An accident scene investigator determines by measuring skid marks, that a car strikes a parked car at $8.20 \mathrm{~m} / \mathrm{s}$ after having decelerated at $-9.60 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for a distance of 17.0 m . What was the initial velocity of the car?

6. A car covers 113 m accelerating at $0.640 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 14.0 s . What was its initial velocity?

7. A racecar is going $34.0 \mathrm{~m} / \mathrm{s}$ after decelerating for 242 m for 4.50 s . What was its deceleration?

8. A car going $20.0 \mathrm{~m} / \mathrm{s}$ accelerates at $0.920 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What time does it take to cover 123 m ?

