3. A car going 26.82 m/s can decelerate at -8.8 m/s/s. In what time can it stop?

4. An oil tanker going at its top speed of 8.3 m/s will coast to a stop in 20 minutes (1200 s). What is the deceleration in m/s/s?

5. A pitching machine accelerates a baseball from rest at 108 m/s/s for 0.37 s. What is the final velocity of the baseball?

6. An Audi can accelerate at 9.72 m/s/s. What time will it take to go from rest to 26.82 m/s? (60 mph)

 $V_f = V_i + at \;\; \mbox{(Put the numbers in the formula in the parenthesis below the formula)}$

7. A car going 25 m/s accelerates at 3.2 m/s/s for 4.1 seconds. What is its final velocity?

$$V_f$$
 = V_i + (a)

8. A freighter going 10.2 m/s reverses its screws and decelerates at -0.024 m/s/s for 112 seconds. What is its final velocity?

$$V_f$$
 = V_i + $(a)(t)$

/s, 14) 32.75 m/s	
13) 28.1 m/	
-1.21 m/s/s,	
s/s, 12)	
11) 7.14 m/s	
10) 850 s, 1	
9) 5.71 s,	

9. A Le	eaf can acce $V_{\rm f}$								From 8.0 m/s to 32 m/s?
	oil tanker c				•	•	g.		
	$V_{\rm f}$	=	V_{i}	+	(a)(t)
11. A o	car speeds u V _f	_							
12. A t	bicycle slow	vs down fi	rom 20.2 m	n/s to 5.7	′ m/s in	12 s. V	What is	the ac	eceleration? (deceleration

$$V_{\rm f} \qquad = \qquad V_{\rm i} \qquad + \qquad (\qquad a \qquad)(\qquad t \qquad)$$

13. A car accelerates at 2.3 m/s/s for 4.3 s at the end of which it is going 38 m/s. What was its initial velocity?

$$V_f = V_i + (a)(t)$$

14. A cop clocks a car going 17 m/s after having decelerated at -6.3 m/s/s for 2.5 s. What was the initial velocity of the car?

$$V_{\rm f} \hspace{1cm} = \hspace{1cm} V_{\rm i} \hspace{1cm} + \hspace{1cm} (\hspace{1cm} a \hspace{1cm}) (\hspace{1cm} t \hspace{1cm})$$