2.2 Quizlette - Acceleration

Acceleration

1. A Leaf gains $24 \mathrm{~m} / \mathrm{s}$ of speed in 3.2 s . What is its acceleration?
2. A 2014 RAV4 accelerates at $4.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 5.0 s . What is the change in velocity?
3. A car going $26.82 \mathrm{~m} / \mathrm{s}$ can decelerate at $-8.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. In what time can it stop?
4. An oil tanker going at its top speed of $8.3 \mathrm{~m} / \mathrm{s}$ will coast to a stop in 20 minutes (1200 s). What is the deceleration in $\mathrm{m} / \mathrm{s} / \mathrm{s}$?
5. A pitching machine accelerates a baseball from rest at $108 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 0.37 s .

What is the final velocity of the baseball?
6. An Audi can accelerate at $9.72 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What time will it take to go from rest to $26.82 \mathrm{~m} / \mathrm{s}$? $(60 \mathrm{mph})$
$\mathbf{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}+$ at (Put the numbers in the formula in the parenthesis below the formula)
7. A car going $25 \mathrm{~m} / \mathrm{s}$ accelerates at $3.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 4.1 seconds. What is its final velocity?

$$
\mathrm{V}_{\mathrm{f}} \quad=\mathrm{V}_{\mathrm{i}} \quad+\quad(\mathrm{a})(\mathrm{t})
$$

8. A freighter going $10.2 \mathrm{~m} / \mathrm{s}$ reverses its screws and decelerates at $-0.024 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 112 seconds.

What is its final velocity?

$$
\mathrm{V}_{\mathrm{f}} \quad=\mathrm{V}_{\mathrm{i}} \quad+\quad(\mathrm{a} \quad)(\mathrm{t} \quad)
$$

9. A Leaf can accelerate at $4.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What time will it take to accelerate from $8.0 \mathrm{~m} / \mathrm{s}$ to $32 \mathrm{~m} / \mathrm{s}$?
$\mathrm{V}_{\mathrm{f}} \quad=\quad \mathrm{V}_{\mathrm{i}}+\quad+\quad\left(\begin{array}{l}\mathrm{a}\end{array}\right)(\mathrm{t} \quad)$
10. An oil tanker can decelerate at $-0.00694 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ by coasting.

What time will it take to decelerate from $8.3 \mathrm{~m} / \mathrm{s}$ to $2.4 \mathrm{~m} / \mathrm{s}$?
$\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}+\quad+\quad\left(\begin{array}{l}\mathrm{a}\end{array}\right)(\mathrm{t})$
11. A car speeds up from $12 \mathrm{~m} / \mathrm{s}$ to $37 \mathrm{~m} / \mathrm{s}$ in 3.5 s . What is the acceleration?
$\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}+\quad+\quad\left(\begin{array}{l}\mathrm{a}\end{array}\right)(\mathrm{t})$
12. A bicycle slows down from $20.2 \mathrm{~m} / \mathrm{s}$ to $5.7 \mathrm{~m} / \mathrm{s}$ in 12 s . What is the acceleration? (deceleration...)

$$
\mathrm{V}_{\mathrm{f}} \quad=\mathrm{V}_{\mathrm{i}} \quad+\quad(\mathrm{a} \quad)(\mathrm{t} \quad)
$$

13. A car accelerates at $2.3 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 4.3 s at the end of which it is going $38 \mathrm{~m} / \mathrm{s}$.

What was its initial velocity?

$$
\mathrm{V}_{\mathrm{f}} \quad=\mathrm{V}_{\mathrm{i}} \quad+\quad\left(\begin{array}{l}
\mathrm{a}
\end{array}\right)(\mathrm{t} \quad)
$$

14. A cop clocks a car going $17 \mathrm{~m} / \mathrm{s}$ after having decelerated at $-6.3 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 2.5 s .

What was the initial velocity of the car?

$$
\mathrm{V}_{\mathrm{f}} \quad=\mathrm{V}_{\mathrm{i}} \quad+\quad(\mathrm{a} \quad)(\mathrm{t} \quad)
$$

