Practice for 2.1 - Speed and unit conversions

(Do the work for these on a separate sheet of paper.)

$12.8 \mathrm{~m} / \mathrm{s}$	1. A car in front of the school goes 30.0 m in 2.35 seconds. What is its speed?
0.15 s	2. What time will it take a car going $88 \mathrm{f} / \mathrm{s}$ to go 13 feet?
$68 \mathrm{f} / \mathrm{s}$	3. My Tercel can go 92 f in about 1.35 seconds. What is its speed?
78 feet	4. A glacier moves at a rate of 5.6 feet/day. What distance does it go in two weeks?
49 mph	5. A trucker goes 345 miles in 7.0 hours. What is her speed?
0.36 s	6. A car moving 44 feet/second takes what time to travel 16 feet?
$93 \mathrm{~km} / \mathrm{h}$	7. What speed must you average to go 280 km in 3.0 hours?
$66 \mathrm{f} / \mathrm{s}$	8. Convert $45 \mathrm{miles} /$ hour to Feet/second
$17 \mathrm{~m} / \mathrm{s}$	9. Convert $60 \mathrm{~km} /$ hour to m / s
$24 \mathrm{~m} / \mathrm{s}$	10. Convert 80 feet/second to m / s
68 mph	11. Convert $110 \mathrm{~km} / \mathrm{hr}$ to mph
$96.6 \mathrm{~km} / \mathrm{hr}$	12. Convert 88.0 feet/sec to km/hr
9.6 s	13. A river current moves at 3.2 miles/hour. How many seconds will it take you to drift 45 feet? $($ Convert to feet/second first)
$12 \mathrm{~m} / \mathrm{s}$	14. A car in front of the school travels 15 feet in 0.38 seconds. What is its speed in m$/ \mathrm{s} ?$
6075 mph	15. A satellite travels at 5.4 miles in 3.2 seconds. What is its speed in miles/hour?
12240 mi	16. A space shuttle moves at 3.4 miles/second. What distance does it go in one hour? How many feet?
6.5 x 107 f	

Practice for 2.2 - Acceleration

(Do the work for these on a separate sheet of paper.)
$a=\frac{\Delta v}{t}:$

1. A car's brakes can make it slow at a rate of $-6.70 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What time will it take the car to stop if it is going $28.1 \mathrm{~m} / \mathrm{s}$? (4.19 s)
2. A drag racer reaches a speed from rest of $54.2 \mathrm{~m} / \mathrm{s}$ in 1.83 seconds. What was its acceleration? ($29.6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$)
3. A javelin is accelerated at $15.6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 1.30 seconds. What is its change in velocity? $(20.3 \mathrm{~m} / \mathrm{s})$
4. A runner accelerates at $4.80 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 1.39 seconds. What is their change in velocity? $(6.67 \mathrm{~m} / \mathrm{s})$
5. What time will it take a rock accelerating at $32.0 \mathrm{f} / \mathrm{s} / \mathrm{s}$ to reach $44.0 \mathrm{f} / \mathrm{s}$? (1.375 s)
6. A car reaches a speed of $22.5 \mathrm{~m} / \mathrm{s}$ in 2.70 seconds from rest. What is its acceleration? $(8.33 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
7. A giant lizard goes from rest to $4.50 \mathrm{~m} / \mathrm{s}$ in 2.54 seconds. What is its acceleration? $(1.77 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
8. A rocket can accelerate at $6.97 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What time will it take to change the velocity of the rocket by $1200 \mathrm{~m} / \mathrm{s}$? (172 s)
9. What is the change in velocity of a baseball if a pitcher accelerates it at $85.1 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 0.320 seconds? ($27.2 \mathrm{~m} / \mathrm{s}$)
10. What time will it take a baseball accelerated by a pitching machine at $92.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ to reach $41.5 \mathrm{~m} / \mathrm{s}$ from rest? (0.451 s)
11. A car at a stoplight accelerates from rest to $21.0 \mathrm{~m} / \mathrm{s}$ in 4.81 seconds. What is its acceleration? ($4.37 \mathrm{~m} / \mathrm{s} / \mathrm{s}$)
12. A rocket accelerates at $45.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 2.30 seconds. What is its change in velocity? ($103.5 \mathrm{~m} / \mathrm{s}$)
13. A runner goes from rest to $8.10 \mathrm{~m} / \mathrm{s}$ in 2.70 seconds. What is their acceleration? $(3.00 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
14. A tennis ball is accelerated at $160 . \mathrm{m} / \mathrm{s} / \mathrm{s}$ from rest to $78.0 \mathrm{~m} / \mathrm{s}$. What time does it take? $(0.4875 \mathrm{~s})$
15. A train can accelerate at $0.382 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is its change in velocity if it accelerates at this rate for 120. seconds? ($45.8 \mathrm{~m} / \mathrm{s}$)
$v_{f}=v_{i}+\mathbf{a t}:$
16. A car accelerates at $3.54 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ from $22.0 \mathrm{~m} / \mathrm{s}$ to $35.0 \mathrm{~m} / \mathrm{s}$. What time does it take? (3.67 s)
17. A car accelerates from $17.4 \mathrm{~m} / \mathrm{s}$ to $36.1 \mathrm{~m} / \mathrm{s}$ in 6.00 seconds. What is its acceleration? $(3.12 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
18. A car coasts along the road, slowing from $23.0 \mathrm{~m} / \mathrm{s}$ to $12.0 \mathrm{~m} / \mathrm{s}$ in 18.2 seconds. What is its acceleration? $(-0.604 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
19. A train going $34.8 \mathrm{~m} / \mathrm{s}$ decelerates at a rate of $-1.40 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 18.2 seconds. What is its final velocity? $(9.32 \mathrm{~m} / \mathrm{s})$
20. An oil tanker accelerates from $4.30 \mathrm{~m} / \mathrm{s}$ to $14.8 \mathrm{~m} / \mathrm{s}$ at a rate of $0.172 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What time does it take? (61.0 s)
21. A bullet going $816 \mathrm{~m} / \mathrm{s}$ decelerates at $-151 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 1.20 s . What is its final velocity? ($634.8 \mathrm{~m} / \mathrm{s}$)
22. A car accelerates at $5.75 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 2.68 seconds. At the end, it is going $28.0 \mathrm{~m} / \mathrm{s}$, so what was its initial velocity? $(12.6 \mathrm{~m} / \mathrm{s})$
23. A car going $15.7 \mathrm{~m} / \mathrm{s}$ accelerates at $4.35 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 9.00 seconds. What is its final velocity? (54.85 m / s)
24. A car going $27.2 \mathrm{~m} / \mathrm{s}$ is slowed at $-5.30 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ to $12.9 \mathrm{~m} / \mathrm{s}$. What time does it take? (2.70 s)
25. A car is decelerating at $-7.46 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, and is still going $11.5 \mathrm{~m} / \mathrm{s}$ after 2.60 seconds. What was its initial velocity? ($30.9 \mathrm{~m} / \mathrm{s}$)
