Noteguide for Basic Magnetism - Video 20A
Definition of N and S poles

Finding polarity of a magnet

Shocking revelation

\qquad

Magnetic declination for the Sugar House quadrangle (Salt Lake City area) in 1963 and 1998, showing a 2.5 -degree decrease in magnetic declination over this time period. Since 1998, it has decreased an additional 1.5 degrees.

Ferrous material (No induced)

Remember - B Field Lines:

- Leave the N pole
- Enter the S pole

Right Hand Rule \#1 - Magnetic Fields encircle wires:

Thumb in direction of I, fingers wrap as B (Magnetic field)
Demo with Magnaprobe/Giant Solenoid

Right Hand Rule \#2 - Loops of Wire act as magnets with a N and S pole:

Wrap your Rt. fingers with the current, and your thumb
is the N pole, the butt of your hand is the S Pole

Right Hand Rule \#3 - Magnetic Fields exert a force on Current Carrying wires that is perpendicular to both the Magnetic Field, and the Current:

Direction of force:

Force on a current carrying wire:

```
\(\mathrm{F}=\mathrm{IlxB}=\mathrm{IlBsin} \theta\) (rt hand direction)
    \(\cdot x\) is vector cross product
    - \(\mathrm{F}=\) force on wire ( N )
    \(\cdot \mathrm{I}=\operatorname{current}(\mathrm{A})\)
    \(\cdot \mathrm{l}=\) length of wire in B field (m)
    \(\cdot B=\) magnetic field in Teslas \((1 T=1 \mathrm{~N} / \mathrm{Am})\)
    \(1 \mathrm{~T}=10,000\) Gauss
    \(\cdot \theta=\) Angle twixt B and 1 (tail to tail)
```

Example: A 0.15 T magnetic field is 27° east of North What's the force on a 3.2 m long wire if the current is 5.0 A to the West?

N
W E
s

Whiteboards

1. What current in what direction would you need to have a force of 10.0 N to the west in 50.0 cm of wire perpendicular to Earth's magnetic field of $0.5 \times 10^{-4} \mathrm{~T}$ to the North? $\left(4 \times 10^{5} \mathrm{~A}\right.$ upward)	2. A 17 cm wire forms a 37° angle with an unknown magnetic field. What is the magnetic field if the force equals 0.015 N and $\mathrm{I}=5.0 \mathrm{~A}$? $\left(2.9 \times 10^{-2} \mathrm{~T}\right)$
Find I and its direction in the B-Field 3. Which way is the force? (8.5 A, ACW)	4. (0.060 N, Up)

Recall
$\mathrm{F}=\mathrm{IlB} \sin \theta$
Derive
$\mathrm{F}=\mathrm{qvB} \sin \theta$

- $\mathrm{F}=$ force on moving particle
- $\mathrm{q}=$ charge on particle (in C) (+ or -???)
- $\mathrm{v}=$ particle's velocity
- $\theta=$ angle twixt v and B

Whiteboards

| 1. What is the force acting on a proton moving at |
| :--- | :--- |
| $2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$ to the North in a 0.35 T magnetic |
| field to the East? $\left(1.4 \times 10^{-11} \mathrm{~N}\right.$, Downward $)$ |
| $\mathrm{q}=1.602 \times 10^{-19} \mathrm{C}$ |\quad| 2. What magnetic field would exert $1.2 \times 10^{-12} \mathrm{~N}$ |
| :--- |
| on an alpha particle going 17% the speed of light? |
| alpha $=2 \mathrm{p} 2 \mathrm{n}(0.073 \mathrm{~T})$ |
| $\mathrm{q}=2\left(1.602 \times 10^{-19} \mathrm{C}\right)=3.204 \times 10^{-19} \mathrm{C}$ |
| $\mathrm{v}=0.17 \times 3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}=5.1 \times 10^{7} \mathrm{~m} / \mathrm{s}$ |

Example - proton going $4787.81 \mathrm{~m} / \mathrm{s}$
in earth's magnetic field $\left(5.0 \times 10^{-5} \mathrm{~T}\right)$ What radius?

Whiteboards

1. If the electron is going $1.75 \times 10^{6} \mathrm{~m} / \mathrm{s}$, and the magnetic field is .00013 T , what is the radius of the path of the electron? $(7.7 \mathrm{~cm})$
$\mathrm{m}=9.11 \times 10^{-31} \mathrm{~kg}$
$\mathrm{q}=1.602 \times 10^{-19} \mathrm{C}$
2. What B-Field do you need to make a proton going $2.13 \times 10^{7} \mathrm{~m} / \mathrm{s}$ go in a 3.2 cm radius circle ACW in the plane of this page? (7.0 T into the page)
$\mathrm{m}=1.673 \times 10^{-27} \mathrm{~kg}$
$\mathrm{q}=1.602 \times 10^{-19} \mathrm{C}$

Whiteboards: (Try to predict the direction they curve - remember electrons go opposite)

Particle Accelerators:

Superconducting magnets
Energy of particles
Why we have particle accelerators

The Aurora Borealis: (Northern Lights)

Earth's Magnetic field

Explain angle to B-Field (vertical B field, velocity angled upward)

Crossed Fields Example:

Proton going $2.35 \times 10^{7} \mathrm{~m} / \mathrm{s}, \mathrm{m}=1.673 \times 10^{-27} \mathrm{~kg}, \mathrm{~B}=0.0145 \mathrm{~T}$
(Which way F from B, which way E is to prevent this. What E is, what direction, does the
charge matter?, does the mass matter?)

You try this one:
Electron going $1.27 \times 10^{5} \mathrm{~m} / \mathrm{s}, \mathrm{m}=9.11 \times 10^{-31} \mathrm{~kg}, \mathrm{~B}=0.0120 \mathrm{~T}$ What electric field in what direction will make the electron go straight down the page

First Region: $\mathrm{V}=$?

Second Region $\mathrm{q} / \mathrm{m}=$?

\qquad
Two Possible Scenarios:

Freakin' magnets, how do they work?

(a)

(b)
-Domains - small bits (1mm) that are aligned -a - unmagnetized $=$ random orientation -b - slight preference down (N pole)

Hysteresis

\qquad

A Galvanometer

A Galvanometer

$\frac{\text { Scorpio } 250 \text { GB }}{\text { Mechanical: HDA - Exploded View }}$

Name
For a circular path around a wire:
$\Sigma \mathrm{B} \cdot \mathrm{dl}=\mathrm{B} 2 \pi \mathrm{r}=\mu_{0} \mathrm{I}$

Ampere's Law
$\Sigma \mathrm{B} \cdot \mathrm{dl}=\mu_{0} \mathrm{I}$
$\Sigma \mathrm{B} \cdot \mathrm{dl}=\operatorname{sum}$ of B in the direction of dl $\mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$ (Magnetic permeability of free space)

$$
\begin{aligned}
& \mathrm{B}=\underline{\mu}_{0} \underline{I} \\
& 2 \pi \mathrm{r} \\
& \mathrm{~B}=\text { magnetic field } \\
& \mathrm{r}=\text { distance from wire } \\
& \mathrm{I}=\text { current in wire } \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}
\end{aligned}
$$

Whiteboards:

1. What is the magnetic field 13 cm from a wire that is carrying 45 A ? $\left(6.9 \times 10^{-5} \mathrm{~T}\right)$
2. At what distance from a wire carrying 1.20 A is the magnetic field $1.50 \times 10^{-4} \mathrm{~T}$? $\left(1.6 \times 10^{-3} \mathrm{~m}\right)$
3. If a wire has a magnetic field of $1.15 \times 10^{-4} \mathrm{~T}$ at a distance of 2.51 cm from its center, what is the current flowing in the wire? (14.4 A)

Two wires:

Magnetic field due to P at Q is:

$$
\mathrm{B}=\frac{\mu_{0} I_{1}}{2 \pi r}
$$

Force on Q is
$\mathrm{F}=\mathrm{I}_{2} 1 \mathrm{~B}=$

Whiteboards:

Whiteboards:

1. A solenoid has 360 windings. It is 13 cm long, and carries a current of 1.75 A . What is its internal B-Field? (0.0061 T)
2. A solenoid needs to generate 1.0 T of B -field. it is 20 cm long, and has 100 . windings. What current does it need? $(1600 \mathrm{~A})$

What is the force on the wire to the right? Each wire is carrying 1.0 A of current, and they are 1.0 m long, and 1.0 m apart.

$$
F=\begin{array}{r}
\underline{\mu}_{0} l_{1} l_{2}! \\
2 \pi r
\end{array}
$$

Definition of an ampere:
An ampere is defined as the current flowing in each of two long, straight and parallel wires exactly one meter apart so that there is a force of exactly $2 \times 10^{-7} \mathrm{~N}$ per meter of length acting on the wires.
(A coulomb is an Amp Second)
B fields encircle moving charge:

Solenoids

Show examples
B field is interior
little b-field near edge outside show with hall probe

(a)

(b)

Straight wires

Show example review rt hand rule

Flat circular coils (loops)

Show example review it hand rule

For now, think of magnetic flux as the magnetic field multiplied by the area.
Lenz's Law states that if the flux in a loop of wire changes, it will induce a current whose flux opposes that change. Watch the videos so that you understand:

1. The direction of the flux caused by the current in a loop:

2. The direction the current flows in the loop or solenoid due to a change in flux: (three steps)

Find the direction of the change of flux. Are you gaining or losing flux, and which way is it?
a. If you are gaining flux, the current flows to oppose the change.
b. If you are losing flux, the current flows to replace the lost flux.

 Before Loop has been rotated	

(more on the back)

Magnetic Flux:
$\Phi=$ BAcos θ
Φ - Magnetic Flux in Webers
B - Magnetic Field in T
A - Area in m^{2}
θ - Angle twixt B and A

Example: The loop is removed in 0.012 s . What is the EMF generated?
Which way does the current flow? $(\mathrm{N}=1)$

Ways to change flux: (show)
$\Phi=\mathrm{BA} \cos \theta$
Change B (magnetic field)
Change A (area)
Change θ (angle - rotate)
Change any combination:
$\Delta \Phi=\mathrm{BA} \cos \theta-\mathrm{BA} \cos \theta$
(final) - (initial)

	$\boldsymbol{\mathcal { E }}=B v \mathrm{l}$
$\mathcal{E}=-N \underline{\Delta \Phi}$	- $\mathrm{B}=$ mag field in T
Δt	$\cdot \mathrm{v}=$ velocity of conductor in m / s
$\Phi=B A \cos \theta$	$\cdot \mathrm{l}=$ length of conductor in m
Derive	- show direction with x product

Whiteboards:

The wire moves to the right at $12.5 \mathrm{~m} / \mathrm{s}$. What is the EMF generated? Which end of the wire is the + end? $\begin{array}{c\|c} \mathrm{B}=1.7 \mathrm{~T} \\ 50 . \mathrm{cm} & \mathrm{C} \\ \hdashline 12.5 \mathrm{~m} / \mathrm{s} \end{array}$ (11 V, bottom is +)	How long does the wire need to be to generate a potential of 45 V from one end to the other? What end is positive? (210 m , bottom is +)
The wire has a potential of 215 V , and the right end is positive. What is the magnetic field, and which direction is it? (0.0501 T ,into page)	mispecefersen

If the moving conductor is not just a wire, but a sheet of conducting material, this gets more interesting. Currents are induced by changing flux. We can talk about this in class next time. I have demos.

Loop Rotating in B field (show)

$\boldsymbol{\varepsilon}=-\mathrm{N} d \underline{\mathrm{BA} \cos (\omega \mathrm{t})}$ $d t$

Solution for \mathcal{E} :

$$
\frac{I_{\mathrm{s}}}{I_{\mathrm{p}}}=\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}
$$

Example: A transformer has 120 primary windings, and 1450 secondary. If there is an AC voltage of 15 V , and a current of 350 mA on the primary, what is the current and voltage on the secondary?

Whiteboards:

1. A transformer has 120 primary windings, and 2400 secondary windings. If there is an AC voltage of 90 V , and a current of 125 mA in the primary, what is the voltage across and current through the secondary? $(1800 \mathrm{~V}, 6.25 \mathrm{~mA})$
2. A transformer is operating at 12.5 W . It steps 110 VAC down to 9.6 VAC. There are 320 primary windings.
A) How many secondary windings are there?
B) What is the current in the primary and secondary?
(28 windings, $0.11 \mathrm{~A}, 1.3 \mathrm{~A}$)
3. An AC Arc welder can deliver 550 Amps of current. If it draws 18 amps from the wall at 120 VAC , what is the delivered voltage? If the primary has 1200 windings, how many does the secondary have? $(3.9 \mathrm{~V}, 39)$

Example:
If you transmit 1000 W at 120 V on wires that have a resistance of 2.0 ohms, what power is lost?

If you transmit 1000 W at $12,0000 \mathrm{~V}$ on wires that have a resistance of 2.0 ohms , what power is lost?

Whiteboards:

1. If you transmit 1300 . W of power at 600 . VAC, how much power is lost if the lines have a resistance of 1.70Ω ? (7.98 W)	2. If you wanted to transmit 7800 . W of power over 5.20Ω power lines, what voltage would you need to use to waste only 6.30 W ? $(7086 \mathrm{~V})$

\qquad

Differential equations	Meaning $\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}$
$\nabla \cdot \mathbf{B}=0$	The electric flux leaving a volume is proportional to the charge inside.
$\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$	There are no magnetic monopoles; the total magnetic flux through a closed surface is zero.
$\nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)$	The voltage induced in a closed circuit is proportional to the rate of change of the magnetic flux it encloses.
The magnetic field induced around a closed loop is proportional to the electric current plus displacement current (rate of change of electric field) it encloses.	

