Practice for 21.2-Faraday's Law

1. a. The approach of the South pole of a magnet from above the page changes the magnetic field from 0.125 T out of the page, to 1.60 T out of the page in 0.0260 s inside this 0.450 x 0.450 m square. What current flows in what direction (CW or ACW) if the loop has a resistance of 0.850Ω ? ($\mathrm{EMF}=11.5 \mathrm{~V}, \mathrm{I}=13.5 \mathrm{~A}, \mathrm{CW}$)
b. A loop of wire with a radius of 0.430 m starts at an angle of 75.0° with the page, and is rotated to the plane of the page. If there is a 6.95 T magnetic field into the page, and the rotation takes 0.00500 s , what is the average EMF generated? Which way does it flow? (598 V , ACW)
c. A vertical wire in the plane of the page traveling to the right is moving at $1.05 \mathrm{~m} / \mathrm{s}$ through a 7.24 T magnetic field out of the page. What is its length if there exists a potential of 4.72 V from one end to the other? Which end is positive, the top or the bottom? $(0.621 \mathrm{~m}$, bottom)
d. A transformer has 3800 . primary windings, and 550 . secondary windings. What is the voltage in the primary if there is a voltage of 72.6 $\mathrm{V}(\mathrm{AC})$ in the secondary? What is the secondary current if the primary is $120 . \mathrm{mA}$? ($502 \mathrm{~V}, 829 \mathrm{~mA}$ or 0.829 A)
e. If you transmit 1500 . W of power at 800 . VAC, how much power is lost if the lines have a resistance of 4.10Ω ? (14.4 W)
2. a. The motion of the North pole of a magnet from above the page changes the magnetic field in 0.0340 s inside this $0.630 \times 0.630 \mathrm{~m}$ square. A current of 3.40 A flows CW in the loop with a resistance of 0.530Ω, so how large was the change in magnetic field, and did the magnet approach the page, or recede? (0.154 T , magnet receded)
b. A loop of wire with a radius of 0.900 m is in the plane of this page, and is rotated so that the loop forms a 42.0° angle with the page. If there is a 5.73 T magnetic field into the page, and this generates an EMF of 16.7 V , in what time did the loop undergo the rotation, and which way did the current flow? (CW or ACW) $(0.224 \mathrm{~s}, \mathrm{CW})$
c. A vertical wire in the plane of the page is 2.86 m long, and is traveling to the left at $16.0 \mathrm{~m} / \mathrm{s}$ through a magnetic field perpendicular to the page. There exists a potential of 19.2 V between one end and the other. The top is positive. What is the magnitude of the magnetic field, and is it into or out of the page? (0.420 T out of page)
d. You want to step 120. VAC down to 24.0 VAC with a transformer. What should be the number of primary windings if you have 1300 . secondary windings? What is the secondary current if the primary is $180 . \mathrm{mA}$? (6500 windings, $900 . \mathrm{mA}$ or 0.900 A)
e. If you wanted to transmit 1400 . W of power over 4.20Ω power lines, what voltage would you need to use to waste only 1.70 W ? ($2.20 \times 10^{3} \mathrm{~V}$)
3. a. The motion of the North pole of a magnet from above the page changes the magnetic field by 4.20 T in 0.0210 s inside this square. A current of 8.60 A flows ACW in the loop with a resistance of 0.930Ω, so what is the area of the loop in m^{2}, and did the magnet approach or recede? $\left(0.0400 \mathrm{~m}^{2}\right.$, or 20 cm on a side, magnet approached)
b. A loop of wire is in the plane of this page, and is rotated so that the loop forms a 78.0° angle with the page. If there is a 4.92 T magnetic field into the page, and the rotation takes 0.0180 s , and there is an EMF of 56.2 V generated, what is the radius of the loop, and what is the direction of the current flow, CW or ACW? $(0.287 \mathrm{~m}, \mathrm{CW})$
c. A horizontal wire in the plane of the page wire is 6.05 m long and is traveling down the page through a 2.64 T magnetic field out of the page. What is its speed if there exists a potential of 21.7 V from one end to the other? Which end is positive, the right, or left? $(1.36 \mathrm{~m} / \mathrm{s}$, left side)
d. A transformer has 340 . primary windings, and 8900 . secondary windings. What is the voltage in the primary if there is a voltage of 343 $\mathrm{V}(\mathrm{AC})$ in the secondary? What is the primary current if the secondary is $130 . \mathrm{mA}$? ($13.1 \mathrm{~V}, 3.40 \mathrm{~A}$ or 3403 mA)
e. You transmit 18,000 . W of power at $12,300 \mathrm{VAC}$ and waste only 2.30 W . What is the resistance of your transmission lines? (1.07Ω)
4. a. The motion of the South pole of a magnet from above the page changes the magnetic field by 5.20 T inside this 0.420×0.420 square. A current of 5.10 A flows CW in the loop with a resistance of 0.530Ω, so how much time did the magnet take to move, and did it approach or recede? (0.339 s , magnet approached)
b. A loop of wire with a radius of 0.320 m starts at an angle of 60.0° with the page, and is rotated to the plane of the page. If there is a voltage of 23.1 V making current go clockwise, and the rotation takes 0.0520 s , what is the magnetic field (assume it is perpendicular to the page), and which way is it, into or out of the page? (7.47 T, out of the page)
c. A horizontal wire in the plane of the page is traveling up the page at $5.29 \mathrm{~m} / \mathrm{s}$ through a 3.03 T magnetic field into the page. What is its length if there exists a potential of 9.00 V from one end to the other? Which end is positive, the right or the left? (0.561 m . left side) d. You want to step 120 . VAC down to 5.00 VAC with a transformer. What should be the number of secondary windings if you have 5600. primary windings? What is the primary current if the secondary is $170 . \mathrm{mA}$? (233 windings, 3403 mA or 3.40 A)
e. You are wasting 1.10 W of power, when you transmit at 13,400 VAC on 1.60Ω transmission lines. What is your transmitted power? ($11,100 \mathrm{~W}$)
5. a. The recession of the North pole of a magnet from above the page changes the magnetic field from 7.30 T into the page, to 1.60 T into the page in 0.0160 s inside this $0.530 \times 0.530 \mathrm{~m}$ square. What current flows in what direction (CW or ACW) if the loop has a resistance of 0.150Ω ? ($667 \mathrm{~A}, \mathrm{CW}$)
b. A loop of wire with a radius of 0.310 m starts at an angle of 57.0° with the page, and is rotated to the plane of the page. If there is a 2.74 T magnetic field into the page, and the rotation takes 0.0540 s , what is the average EMF generated? Which way does it flow? (6.98 V , ACW)
c. A vertical wire in the plane of the page is 6.19 m long, and is traveling to the left at $67.1 \mathrm{~m} / \mathrm{s}$ through a magnetic field perpendicular to the page. There exists a potential of 12.7 V between one end and the other. The top is positive. What is the magnitude of the magnetic field, and is it into or out of the page? (0.0306 T , out of the page)
d. A transformer has 170. primary windings, and 4500 . secondary windings. What is the voltage in the primary if there is a voltage of 645 $\mathrm{V}(\mathrm{AC})$ in the secondary? What is the primary current if the secondary is $190 . \mathrm{mA}$? $(24.4 \mathrm{~V}, 5029 \mathrm{~mA}$ or 5.03 A$)$
e. If you transmit 1800 . W of power at 10,200 . VAC, how much power is lost if the lines have a resistance of 2.10Ω ? (0.0654 W)
