II. Simple solenoids moved relative to B field.

1. The 16.0 cm diameter loop below has 42 windings is pushed into the 8.70 T magnetic field in 0.0140 s . What is the average EMF, and what direction does the current flow? $(525 \mathrm{v}, \mathrm{CW})$

B:

2. The 15.0 cm radius loop below has 12 windings is pulled from the 7.20 T magnetic field generating an average EMF of 67.0 V . What time did this take, and which direction did the current flow? $(91.2 \mathrm{~ms}, \mathrm{CW})$

```
B
xx\xxxx
xNXXXXX
xXXXXXX}
xxxxxXX
```

3. The loop below is put into the 6.30 T magnetic field in 0.0120 s generating an average EMF of 93.0 V . What is the diameter of the 56 winding loop and which direction does the current flow? $(6.35 \mathrm{~cm}, \mathrm{ACW})$

B
xxxx世xx
xxxxxxx

III. Magnet Approaches/Recedes

4. The recession of the South pole of a magnet from above the page changes the magnetic field from 9.50 T out of the page, to 3.20 T out of the page in 0.0130 s inside this 0.510 mx 0.510 m square. What is the induced EMF, and what current flows in what direction (CW or ACW) if the loop has a resistance of 2.70Ω ? ($126 \mathrm{~V}, 46.7 \mathrm{~A}, \mathrm{ACW}$)
\square
5. The motion of the North pole of a magnet from above the page changes the magnetic field by 2.70 T inside this $0.820 \mathrm{~m} \times 0.820 \mathrm{~m}$ square. A current of 2.10 A flows CW in the loop with a resistance of 0.260Ω, so what is the induced EMF, how much time did the magnet take to move, and did it approach or recede? $(546 \mathrm{mV}, 3.33 \mathrm{~s}$, The magnet receded)
\square
6. The approach of the South pole of a magnet from above the page changes the magnetic field from 0.105 T out of the page, to 3.60 T out of the page in 0.0150 s inside this 0.480 mx 0.480 m square. The current in the wire is 12.5 A . What is the induced EMF, what is the resistance of the wire, and what direction did the current flow? ($53.7 \mathrm{~V}, 4.29 \Omega, \mathrm{CW}$)
\square

IV. Loop rotation $\Delta \Phi_{B}=\left(\mathbf{B A} \cos \theta_{1}-\mathbf{B A} \cos \theta_{2}\right)=\mathbf{B A}\left(\cos \theta_{1}-\cos \theta_{2}\right)$

7. A single loop of wire with a diameter of 0.210 m starts at an angle of 54.0° with the page, and is rotated to an angle of 23.0° with the page. If there is a 12.0 T magnetic field into the page, and the rotation takes 0.0150 s , what is the average EMF generated? Which way does it flow? $(9.22 \mathrm{~V}, \mathrm{ACw})$

8. A single loop of wire with a radius of 0.650 m is in the plane of this page, and is rotated so that the loop forms a 65.0° angle with the page. If there is a 6.50 T magnetic field into the page, and this generates an average EMF of 18.0 V , in what time did the loop undergo the rotation, and which way did the current flow? (CW or ACW) ($0.277 \mathrm{~s}, \mathrm{CW}$)

9. A single loop of wire with a diameter of 0.780 m starts at an angle of 78.0° with the page, and is rotated to the plane of the page. If there is a voltage of 32.0 V making current go clockwise, and the rotation takes 0.0160 s , what is the magnetic field (assume it is perpendicular to the page), and which way is it, into or out of the page? (1.35 T , out of the page)

V. Moving Conductors

10. A 25.6 cm long horizontal wire in the plane of the page is traveling down the page at $12.5 \mathrm{~m} / \mathrm{s}$ through a 2.50 T magnetic field into the page. What is the EMF from one end to the other? Which end is positive, the right or the left? (8.00 v , right is positive)
11. A vertical wire 13.5 m long in the plane of the page traveling to the right through a 1.10 T magnetic field out of the page. What is its velocity if there exists a potential of 64.0 V from one end to the other? Which end is positive, the top or the bottom? ($4.31 \mathrm{~m} / \mathrm{s}$, botom is positive)
12. A vertical wire in the plane of the page is 15.0 m long, and is traveling to the left at $22.0 \mathrm{~m} / \mathrm{s}$ through a magnetic field perpendicular to the page. There exists a potential of 1.35 V between one end and the other. The bottom is positive. What is the magnitude of the magnetic field, and is it into or out of the page? $(4.09 \mathrm{mT}$, into the page)

VII. Transformers

13. A transformer has 5200 . primary windings, and 208 secondary windings. What is the voltage in the secondary if there is a voltage of $125 \mathrm{~V}(\mathrm{AC})$ in the primary? What is the secondary current if the primary is 12.0 mA ? $(5.00 \mathrm{~V}, 300 \mathrm{~mA})$
14. A transformer has 412. primary windings, and 6700 . secondary windings. What is the voltage in the primary if there is a voltage of 112 $\mathrm{V}(\mathrm{AC})$ in the secondary? What is the primary current if the secondary is $140 . \mathrm{mA}$? $(6.89 \mathrm{~V}, 2.28 \mathrm{~A})$
15. You want to step 120 . VAC down to 9.60 VAC with a transformer. What should be the number of primary windings if you have 120 . secondary windings? What is the secondary current if the primary is $220 . \mathrm{mA}$? $(1,500$ windings, 2.75 A$)$

VIII. Transmission of Power

16. If you transmit 1300. W of power at 700. VAC, how much power is lost if the lines have a resistance of 7.20Ω ? (24.8 W)
17. If you wanted to transmit 1700 . W of power over 3.20Ω power lines, what voltage would you need to use to waste only 6.50 W ? (1193 V)
18. You transmit 19,000 . W of power at $15,800 \mathrm{VAC}$ and waste only 3.40 W . What is the resistance of your transmission lines? (2.35 Ω)
