Definition:

$W=q \Delta V_{\mathrm{e}}$	
$\Delta \mathrm{V}_{\mathrm{e}}=$ Change in Voltage (Volts, $\left.\mathrm{V}, \mathrm{J} / \mathrm{C}\right)$ $\mathrm{W}=$ Work or PE (J) $\mathrm{q}=$ Charge (C)	$W=m \Delta V_{\mathrm{g}}$ $\Delta \mathrm{V}_{\mathrm{g}}=$ Change in Grav. Potential ($\left.\mathrm{J} / \mathrm{kg}\right)$ $\mathrm{W}=$ Work or PE (J) $\mathrm{m}=$ Mass (kg)
Example 1: Hans Full does 0.012 J of work on $630 \mu \mathrm{C}$ of charge. What is the change in voltage?	Example 2: How much work would you need to move 34.0 kg from a gravitational potential of $12.0 \mathrm{~J} / \mathrm{kg}$ to $67.0 \mathrm{~J} / \mathrm{kg} ?$

Whiteboards. (Note the order they are listed)

Definition:

$g=-\frac{\Delta V_{g}}{\Delta r}$	$E=-\frac{\Delta V_{e}}{\Delta r}$		
$\Delta \mathrm{~V}_{\mathrm{g}}=$ Change in Grav. Potential (J/kg)			
$\mathrm{g}=$ Grav. field strength (N / kg)			
$\Delta \mathrm{r}=$ Displacement (m)		\quad	$\Delta \mathrm{V}_{\mathrm{e}}=$ Change in Voltage (Volts, V, J/C)
:---			
$\mathrm{E}=$ Elec. field strength (N/C)			
$\Delta \mathrm{r}=$ Displacement (m)			

Whiteboards.

1. Lee DerHosen places a voltage of 25 V across two $\|$ plates separated by 5.0 cm of distance. What is the electric field generated? $\left(5.0 \times 10^{2} \mathrm{~V} / \mathrm{m}\right)$
2. Art Zenkraftz measures a $125 \mathrm{~V} / \mathrm{m}$ electric field between some || plates separated by 3.1 mm . What must be the voltage across them? (0.39 V)
3. Helen A. Handbasket lifts a mass upwards (on earth) increasing its gravitational potential by $142 \mathrm{~J} / \mathrm{kg}$. What vertical distance did she lift it? (14.5 m)
(do the ones on the back too - they are like the assessment questions)

Name

Suppose we dropped a proton near the +12 V side. What would be the proton's velocity when it struck the right side?

$$
\mathrm{q}=+1.602 \times 10^{-19} \mathrm{C}, \mathrm{~m}=1.673 \times 10^{-27} \mathrm{~kg}
$$

1 electron volt is the energy of one electron charge moved through one volt.
An electron accelerated through 12 V has 12 eV of energy
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}\left(\Delta \mathrm{E}_{\mathrm{p}}=\Delta \mathrm{Vq}\right)$
An alpha particle (2p2n) accelerated through 12 V has 24 eV of energy (two electron charges)

Whiteboards.

1. Brennan Dondahaus accelerates an electron ($\mathrm{m}=9.11 \times 10^{-}$ ${ }^{31} \mathrm{~kg}$) through a voltage of 1.50 V . What is its final speed assuming it started from rest? $(726,000 \mathrm{~m} / \mathrm{s})$
2. Brynn Iton notices a proton going $147,000 \mathrm{~m} / \mathrm{s}$. What is its kinetic energy in Joules, through what potential was it accelerated from rest, and what is its kinetic energy in electron volts? ($1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}, \mathrm{mp}=1.673 \times 10^{-27} \mathrm{~kg}$) $\left(1.81 \times 10^{-17} \mathrm{~J}=113 \mathrm{eV}\right.$, it was accelerated through 113 V)
3. Mark Meiwerds notices that Fe ions ($\mathrm{m}=9.287 \times 10^{-26} \mathrm{~kg}$) are traveling $7193 \mathrm{~m} / \mathrm{s}$ after accelerating from rest through 5.00 V. What is the charge on this ion, and is it $\mathrm{Fe}+1,+2$, or $+3 ?\left(4.805 \times 10^{-19} \mathrm{C}\right.$ which is about 3 e , so it is $\left.\mathrm{Fe}^{+3}\right)$

$\begin{aligned} & V_{\mathrm{g}}=-\frac{G M}{r} \\ & \mathrm{~V}_{\mathrm{g}}=\text { Potential at distance } \mathrm{r} \\ & \mathrm{~m}=\operatorname{mass}(\mathrm{kg}) \\ & \mathrm{r}=\operatorname{distance}(\mathrm{m}) \end{aligned}$	$\begin{aligned} & V_{\mathrm{e}}=\frac{k Q}{r} \\ & \mathrm{~V}_{\mathrm{e}}=\operatorname{Potential} \text { at distance } \mathrm{r} \\ & \mathrm{Q}^{2}=\operatorname{charge}(\mathrm{C}) \\ & \mathrm{r}=\operatorname{distance}(\mathrm{m}) \end{aligned}$
Example 2: What is the gravitational potential on the surface of the moon? Mass $=7.35 \times 10^{22} \mathrm{~kg}$, radius $=1.74 \times 10^{6} \mathrm{~m}$	Example 1: A van de Graaff generator has an 18 cm radius dome, and a charge of $0.83 \mu \mathrm{C}$. What is the voltage at the surface of the dome?

Whiteboards:

Lauren Order is 3.45 m from a $-150 . \mu \mathrm{C}$ charge. What is the voltage at this point? $\left(-3.91 \times 10^{5} \mathrm{~V}\right)$	Alex Tudance measures a voltage of 25,000 volts near a Van de Graaff generator whose dome is 7.8 cm in radius. What is the charge on the dome? $(0.22 \mu \mathrm{C})$
What is the gravitational potential on the surface of the earth? $\mathrm{m}=5.97 \times 10^{24} \mathrm{~kg}, \mathrm{r}=6.38 \times 10^{6} \mathrm{~m}\left(-6.24 \times 10^{7} \mathrm{~J} / \mathrm{kg}\right)$	At what distance from the center of the moon is the gravitational potential $-1.00 \mathrm{x} 10^{6} \mathrm{~J} / \mathrm{kg} ?$ Mass $=7.35 \times 10^{22} \mathrm{~kg}$ $\left(4.90 \times 10^{6} \mathrm{~m}\right)$

The sum of the potentials due to an array of point charges or masses is the scalar sum of the individual potentials. (Scalar is like a number: $3+5=8$)

Charge A is $-1.20 \mu \mathrm{C}$, charge B is $+3.40 \mu \mathrm{C}$ Find the Potential at the x (Each square is a meter)

Mass A is $2.30 \times 10^{12} \mathrm{~kg}$, mass B is $8.70 \times 10^{12} \mathrm{~kg}$ Find the Potential at the x (Each square is a meter)
(I feel like if you watched those examples, you really don't need to do the whiteboards, but I put them on the back just in cases - so they are optional)

Mass A is $5.10 \times 10^{12} \mathrm{~kg}$, mass B is $2.40 \times 10^{12} \mathrm{~kg}$ Find the Potential at the x
(Each square is a meter)

$-14,000 \mathrm{~V}$
\qquad
The work done to move a point charge is $\mathrm{W}=\mathrm{q} \Delta \mathrm{Ve}$, where $\Delta \mathrm{Ve}=\mathrm{Vf}-\mathrm{Vi}$
What work to bring a $2.30 \mu \mathrm{C}$ charge from 24.0 cm from a
$1.50 \mu \mathrm{C}$ charge to 11.0 cm from a $1.50 \mu \mathrm{C}$ charge

1. Find initial voltage
2. Find final voltage
3. $\Delta \mathrm{V}=$ final - initial
4. $\Delta \mathrm{E}_{\mathrm{p}}=\mathrm{W}=\Delta \mathrm{Vq}$

Charge A is $-1.20 \mu \mathrm{C}$, charge B is $+3.40 \mu \mathrm{C}$
What work would it take to move a $-6.70 \times 10^{-3} \mathrm{C}$ charge from p to q ?

One More Example on the back with gravity

Mass A is $2.30 \times 10^{12} \mathrm{~kg}$, mass B is $8.70 \times 10^{12} \mathrm{~kg}$
What work would it take to move a 4.50 kg mass from q to p ?

Part 1 - Acceleration toward the anode: $\quad \mathrm{Ve}=1 / 2 \mathrm{mv}^{2}$
Example - A CRT uses an accelerating potential of 5200. V. What velocity do the electrons have when they pass through the anode?

Part 2 - Steering the electron:
What voltage must be applied across the plates above to make the electron emerge from the other end 2.00 cm from the lower plate, assuming it starts parallel to the plates, and 4.00 cm from the lower plate? Which plate would be more positive?

There is an electric field between these plates of $9420 \mathrm{~V} / \mathrm{m}$ that makes the electrons that enter midway, nearly strike the bottom plate before they emerge from the plates.
What is the voltage across these plates?

What is the force on the electrons between the plates?

What is the downward acceleration of the electrons?

What time is the electron between the plates

What is the horizontal velocity of the electrons?

What voltage accelerated them to this speed before they got here?
$C=\frac{q}{V}$
capactor
C $=$ capacitance (Farads)
\qquad

A CCD pixel has a capacitance of $1.7 \times 10^{-12} \mathrm{~F}$. What is the voltage across it if it has been charged 6.0×10^{4} electron charges? $(1 \mathrm{e}=1.602 \mathrm{E}-$ 19)
$\mathrm{V}=$ voltage across the capacitor (V)

Whiteboards:

1. What is the charge on a 250 microfarad capacitor if it has been charged to 12 V ? $(0.0030 \mathrm{C})$
2. What is the capacitance of a CCD pixel if it has 0.014 V across it when it has a charge of $2.13 \times 10^{-15} \mathrm{C}$?
$\left(1.5 \times 10^{-13} \mathrm{~F} \quad(\right.$ or 0.15 pF$)$)
$C=\varepsilon \frac{A}{d} \quad \begin{aligned} & \mathrm{A}=\text { plate area }\left(\mathrm{m}^{2}\right) \\ & \mathrm{d}=\text { plate separation }(\mathrm{m}) \\ & \varepsilon=\text { permittivity of }\end{aligned}$
$\varepsilon=$ permittivity of
dielectric $\left(\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$
$\varepsilon=K \varepsilon_{\mathrm{o}}$
(air $\left.\approx \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$

A 3.00 mm air gap capacitor has plates that measure $21.6 \mathrm{~cm} \times 27.9 \mathrm{~cm}$. (8.5 " $\times 11$ ") What is its capacitance?

Whiteboard: 1. A $47 \mu \mathrm{~F}$ electrolytic capacitor uses aluminum oxide as its dielectric $(\mathrm{K}=9.1)$ If it has a plate area of 0.50 cm x 12.00 cm , what must be the thickness of the dielectric? $(1.0 \mathrm{~nm})$
2. (Challenge for smart people only) You are designing a 1400 pF capacitor that must be able to have a peak voltage of 150 V. If you use neoprene as the dielectric,
A. What is the minimum gap you can use? $\left(1.25 \times 10^{-5} \mathrm{~m}\right)$
B. What plate area must you have? $\left(2.94 \times 10^{-4} \mathrm{~m}^{2}\right)$

Energy

$E=\frac{1}{2} C V^{2}$
derive $1 / 2 \mathrm{bh}$

A $4500 \mu \mathrm{~F}$ capacitor is charged to 6.0 V . What energy does it store?

Whiteboards:

1. A camera flash requires a stored energy of 1.80 J . To what voltage must it charge a $4700 \mu \mathrm{~F}$ capacitor? (28 V)
2. What sized capacitor do you need to store 15 J of energy at a voltage of 12 V ? $(0.21 \mathrm{~F})$
3. What is the potential energy of $0.12 \mu \mathrm{C}$ stored on an air gap capacitor with a plate area of $25 \mathrm{~cm} \times 25 \mathrm{~cm}$, and a plate separation of 1.0 mm ? (Find C, then V, then E) $\left(1.3 \times 10^{-5} \mathrm{~J}\right)$

What happens to the potential energy if the plates are moved so they are 3.0 mm apart? (Same charge) $\left(3.9 \times 10^{-5} \mathrm{~J}\right)$

Noteguide for RC Circuits - Videos 16P
Name \qquad

$$
q=q_{0} e^{-\frac{t}{\tau}}
$$

$$
\begin{aligned}
& V=V_{0} e^{-\frac{t}{\tau}} \quad \tau=R C \\
& q=q_{0} e^{-\frac{t}{\tau}} \\
& I=\begin{array}{l}
\quad \begin{array}{l}
\mathrm{V}=\text { electrical potential }(\mathrm{V}) \\
\begin{array}{l}
\mathrm{V}=\text { initial }(\text { etc })
\end{array} \\
\mathrm{q}=\text { charge }(\mathrm{C}) \\
\mathrm{I}=\text { current }(\text { Amperes } \mathrm{A}(\mathrm{C} / \mathrm{s})) \\
\mathrm{t}=\text { time } \\
\mathrm{R}) \\
\mathrm{R}=\text { resistance }(\text { ohms } \Omega(\mathrm{V} / \mathrm{A})) \\
\mathrm{C}=\text { capacitance }(\mathrm{F})
\end{array}
\end{array}
\end{aligned}
$$

$$
V=V_{o}\left(1-e^{\frac{-t}{R C}}\right)
$$

$$
{ }_{0}^{i_{i_{\operatorname{come}}}}
$$

$\tau=R C \quad V=V_{0} e^{-\frac{t}{\tau}}$
A $47.0 \mu \mathrm{~F}$ capacitor is charged to 12.0 V initially, and discharged through a $100 . \mathrm{k} \Omega$ resistor. What is its voltage at 13.0 s into the discharge? $(0.755 \mathrm{~V})$

At what time does it reach 6.0 V ? (3.26 s)

Whiteboards:

1. A $100 . \mu \mathrm{F}$ capacitor is attached in parallel with a $1.00 \mathrm{M} \Omega$ resistor. If it is initially charged to 5.00 V , what is the voltage 35.0 seconds after it starts to discharge? (3.52 V)
2. A $4.7 \mu \mathrm{~F}$ capacitor is attached to a $2.2 \mathrm{M} \Omega$ resistor in parallel. After 78 seconds of discharge there is $0.023 \mu \mathrm{C}$ of charge on the capacitor. What was the original charge? $(43 \mu \mathrm{C})$
3. A discharging parallel RC circuit starts at 12.00 V , and after 312 s has reached 4.00 V . A. What is the time constant? B. What is the resistance if the capacitor has a value of $22.0 \mu \mathrm{~F}$? ($284 \mathrm{~s}, 12.9 \mathrm{M} \Omega$)
4. A discharging parallel RC circuit has an initial discharge current of 195 mA , and is at a current of 162 mA at a time of 35.0 seconds into its discharge. What will be the current at 72.0 s ? $(133 \mathrm{~mA})$

$$
E_{\mathrm{P}}=m V_{g}=-\frac{G M m}{r} \left\lvert\, \quad E_{\mathrm{P}}=q V_{\mathrm{e}}=\frac{k q_{1} q_{2}}{r}\right.
$$

An 89.0 gram $+2.30 \mu \mathrm{C}$ charge is brought to 15.0 cm from a $+\mathbf{1 . 1 0} \mu \mathrm{C}$ charge. The $2.30 \mu \mathrm{C}$ charge is released from rest, while the $+\mathbf{1 . 1 0} \mu \mathrm{C}$ is held fixed.

What is its speed when it is 37.0 cm away?

What is its speed when it is very far away?
(Do the gravity example on the back as well...)

Suppose you fired a 2.3 g rifle bullet at $1150 \mathrm{~m} / \mathrm{s}$ straight up from the surface of the moon. Mass $=7.35 \times 10^{22} \mathrm{~kg}$
Radius $=1.74 \times 10^{6} \mathrm{~m}$
A. What would be the greatest height it would reach?
B. What speed would it be going when it was $100 . \mathrm{km}$ above the surface?
D. What speed would it need to escape the moon's gravity?

