- Charge is in Coulombs (C) $(1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s})$
- Signed quantity (+/-)
- $e=1.602 \times 10^{-19} \mathrm{C}$
- Protons are +, electrons are -
- $1 \mathrm{C}=6.25 \times 10^{18}$ electrons or protons
- $1 \mu \mathrm{C}=10^{-6} \mathrm{C}$
- Charge is conserved
- Likes repel, opposites attract

$$
F_{\mathrm{E}}=k \frac{q_{1} q_{2}}{r^{2}}
$$

Example 1- What is the force of attraction between a helium electron and its nucleus if the electron is $1.7 \times 10^{-10} \mathrm{~m}$ away?)
$\mathrm{F}_{\mathrm{E}}=$ force of attraction or repulsion (N)
$\mathrm{k}=$ "Coulomb constant" ($8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$)
$\mathrm{q}_{1}=$ charge $1(\mathrm{C})$
$\mathrm{q}_{2}=$ charge $2(\mathrm{C})$
$r=$ center to center distance (m)
Example 2 - Two charged spheres have a force of repulsion of 5.40 N when their centers are 0.120 m apart. What is the force of repulsion when their centers are 0.360 m apart?

Whiteboards - Work these out - if you don't get the right answer, watch the video to see how to do it.

1. Jess Uwaite places a $+3.0 \mu \mathrm{C}$ charge 3.5 m from a +5.0 $\mu \mathrm{C}$ charge. What is the force of repulsion? $\left(1 \mu \mathrm{C}=10^{-6} \mathrm{C}\right)(0.011 \mathrm{~N})$	2. Noah Verkreinatlaad places a 5.0 C charge how far from a 3.0 C charge to make the force between them exactly 4.00 N ? $\left(1.8 \times 10^{5} \mathrm{~m}\right.$ or 180 km$)$

\qquad

Find the net force on B :

Write down the three steps:

Whiteboards - Work these out - if you don't get the right answer, watch the video to see how to do it.

Find the force on A :

A
23.0 cm
(B)
35.0 cm
$+18.0 \mu \mathrm{C}$
(C)
$-17.0 \mu \mathrm{C}$
$+45.0 \mu \mathrm{C}$

Find the force on B: (Use the force of gravity formula $-F=\frac{G m_{1} m_{2}}{r^{2}}, G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
(A)
$9.80 \times 10^{6} \mathrm{~kg}$
5.90 m
(B)
$1.10 \times 10^{6} \mathrm{~kg}$
3.10 m
$2.30 \times 10^{6} \mathrm{~kg}$

Find the net force on A :

Write down the three steps:

Try this one:
B. A is $1.60 \times 10^{6} \mathrm{~kg}$, and B is $2.10 \times 10^{6} \mathrm{~kg}$, and C is $6.30 \times 10^{6} \mathrm{~kg}$. Use the force of gravity formula -

$$
\begin{aligned}
F & =\frac{G m_{1} m_{2}}{r^{2}} \\
\mathrm{G} & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
\end{aligned}
$$

Gravitational	Electrical

Field:	Field: $E=\frac{F}{q}$ E - electric field strength (N/C) F - force exerted by field on charge (N) q - the charge (C) $E=k \frac{q}{r^{2}}$ (not in data packet) E-E near a point charge away from charge (N / C) k $-8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$ q - the charge (C) r - distance from the point charge (m)

Example $1-\mathrm{A}+125 \mu \mathrm{C}$ charge experiences a force to the right of 0.0175 N . What is the Electric field, and its direction?

Example 2 - An electron travels through a region where there is a downward electric field of 325 N/C. What force in what direction acts on the electron, and what is its acceleration?

Whiteboards - Work these out - if you don't get the right answer, watch the video to see how to do it.

1.Ishunta Dunnit notices that a charge of -125 $\mu \mathrm{C}$ experiences a force of 0.15 N to the right. What is the electric field and its direction? ($1200 \mathrm{~N} / \mathrm{C}$ left)	2. Doan Botherme places a +12 mC charge into an upward $160 \mathrm{~N} / \mathrm{C} \mathrm{electric} \mathrm{field} What force in what direction does it$. experience? (1.9 N up)
3.Alfred O. Dadark is on a planet where a mass of 0.12 kg experiences a downward force of 7.80 N. What is the gravitational field on the surface of this planet? ($65 \mathrm{~N} / \mathrm{kg}$ down)	4. Telly Vishun places an unknown charge into a known upward electric field of $612 \mathrm{~N} / \mathrm{C}$, and the charge experiences a downward force of .851 N. What is the charge? (-1.39 mC)

Field: $\quad g=G \frac{M}{r^{2}}$
 g - g near a point mass toward mass $(\mathrm{N} / \mathrm{kg})$
 $\mathrm{G}-6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
 M - the mass (kg)
 r - distance from the point mass (m)

Field: $\quad E=k \frac{q}{r^{2}}$ (not in data packet)
E-E near a point charge away from charge (N/C)
$\mathrm{k}-8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
q - the charge (C)
r - distance from the point charge (m)

Example: What is the electric field 2.0 m to the right of a $-21 \mu \mathrm{C}$ charge?

Whiteboards - Work these out - if you don't get the right answer, watch the video to see how to do it.

1.Vera Similitude measures the electric field 13.5 m to the right of a $-1.45 \mu \mathrm{C}$ charge. What electric field in what direction? $(71.5 \mathrm{~N} / \mathrm{C}$ to the left)	2. Vesta Buhl measures an electric field of 2,120 N/C, 67 cm from a charge of unknown value. The electric field is away from the charge. What is the charge? $(+0.11 \mu \mathrm{C})$
3.Amelia Rate measures a gravitational field of $3.4 \mathrm{~N} / \mathrm{kg}$. What distance is she from the center of the earth? (Me = 5.98 x 1024 kg .) (1.1 x $\left.10^{7} \mathrm{~m}\right)$	4. Tara Bull measures an electric field of $10 . \mathrm{N} / \mathrm{C}$ what distance from an electron? (12 $\mu \mathrm{m})$

Field: $\begin{aligned} g=G & \frac{M}{r^{2}} \\ & \mathrm{~g}-\mathrm{g} \text { near a point mass toward mass }(\mathrm{N} / \mathrm{kg}) \\ & \mathrm{G}-6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\ & \mathrm{M} \text { - the mass }(\mathrm{kg}) \\ & \mathrm{r} \text { - distance from the point mass }(\mathrm{m}) \end{aligned}$	Field: $\quad E=k \frac{q}{r^{2}}$ (not in data packet) E-E near a point charge away from charge (N / C) $\mathrm{k}-8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$ q - the charge (C) r - distance from the point charge (m)

11.2 cm

Example: What is the electric field at the x ?

Whiteboards - Work these out - if you don't get the right answer, watch the video to see how to do it.

1. Find the gravitational field at p: ($49.0 \mathrm{~N} / \mathrm{kg}$ to the left)
(m)
$1.80 \times 10^{6} \mathrm{~m}$
(p)
$9.10 \times 10^{6} \mathrm{~m}$
(m)
$2.70 \times 10^{24} \mathrm{~kg}$
$8.20 \times 10^{24} \mathrm{~kg}$
2. Find the electrical field at $\mathrm{p}:(51.6 \mathrm{~N} / \mathrm{C}$ to the right $)$
(p) 13.0 m

21.0 m
$-2.30 \mu \mathrm{C}$
$+9.10 \mu \mathrm{C}$

I think you will be OK if you pick only one of these. They are a lot like the vector force ones. If you do both that would be better - but I will leave that up to you.
Find the electric field at point p . Charge A is $-3.20 \mu \mathrm{C}$, B is $+4.40 \mu \mathrm{C}$, and each grid line is a meter. ($2640 \mathrm{~N} / \mathrm{C}$ right and up at 28.1° with the x axis)
(4:

Find the gravitational field at point p. Mass A is $1.60 \times 10^{12} \mathrm{~kg}$, B is $3.9 \times 10^{12} \mathrm{~kg}$, and each grid line is a meter. ($21.5 \mathrm{~N} / \mathrm{kg}$ right and down at 18.6° with the x axis)

