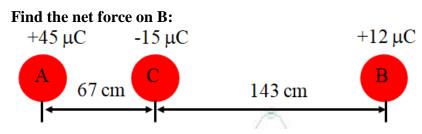

Noteguide for Coulomb's Law - Videos 16AB

- Charge is in Coulombs (C) $(1C = 1 \text{ A} \cdot \text{s})$
 - Signed quantity (+/-)
 - $e = 1.602 \times 10^{-19} \text{ C}$
 - Protons are +, electrons are -
 - $1 \text{ C} = 6.25 \times 10^{18} \text{ electrons or protons}$
 - $1\mu C = 10^{-6} C$
- Charge is conserved
- Likes repel, opposites attract

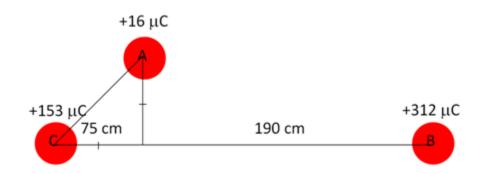

Example 1- What is the force of attraction between a helium electron and its nucleus if the electron is 1.7×10^{-10} m away?

Example 2 – Two charged spheres have a force of repulsion of 5.40 N when their centers are 0.120 m apart. What is the force of repulsion when their centers are 0.360 m apart?

1. Jess Uwaite places a +3.0 μ C charge 3.5 m from a +5.0 μ C charge. What is the force of repulsion? (1 μ C = 10 ⁻⁶ C) (0.011N)	2. Noah Verkreinatlaad places a 5.0 C charge how far from a 3.0 C charge to make the force between them exactly 4.00 N? (1.8x10 ⁵ m or 180 km)
3. Cally Seniks measures a force of attraction of 4.50 N between two charges when their centers are separated by 1.20 m. What is the force of attraction when their centers are separated by 0.950 m? (7.18 N)	4. Rita Book measures a force of attraction of 12.0 N between two charges when their centers are separated by 2.50 m. At what separation is the force of attraction 7.00 N? (3.27 m)

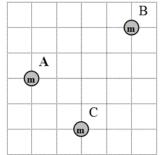
Noteguide for Linear Arrays - Videos 16D1

Name_____



Write down the three steps:

Find the force	on A:	_			_	
A	23.0 cm	В	3:	5.0 cm	C	
-17.0 μC		$+18.0\mu C$			+45.0 μC	
				Gm_1m_2		- 22
Find the force	on B: (Use the second s	ne force of gra	wity formula -	$F = \frac{1}{r^2}, 0$	$G = 6.67 \times 10^{-11} N$	Nm² kg⁻²
A	5.90 m		В	3.10 m	C	
9.80x10 ⁶ kg			1.10x10 ⁶ kg		2.30x10 ⁶ kg	


Name

Find the net force on A:

Write down the three steps:

Try this one: B. A is 1.60x10⁶ kg, and B is 2.10x10⁶ kg, and C is 6.30x10⁶ kg. Use the force of gravity formula -

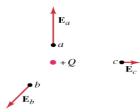
 $F = \frac{Gm_1m_2}{r^2}$ G = 6.67x10⁻¹¹ N m² kg⁻²

(88.2 N right and down at 38.1° below the x-axis)

Gravitational	Electrical

Field:	$g = \frac{F}{m}$ g - gravitational field strength (N/kg) F - force exerted by field on the mass (N) m - the mass (kg)	Field: $E = \frac{F}{q}$ E - electric field strength (N/C) F - force exerted by field on charge (N) q - the charge (C)
	$g = G \frac{M}{r^2}$ g - g near a point mass <u>toward</u> mass (N/kg) G - 6.67x10 ⁻¹¹ Nm ² kg ⁻² M - the mass (kg) r - distance from the point mass (m)	$E = k \frac{q}{r^2}$ (not in data packet) E - E near a point charge <u>away</u> from charge (N/C) k - 8.99x10 ⁹ Nm ² C ⁻² q - the charge (C) r - distance from the point charge (m)

Example 1 - A +125 μ C charge experiences a force to the right of 0.0175 N. What is the Electric field, and its direction?

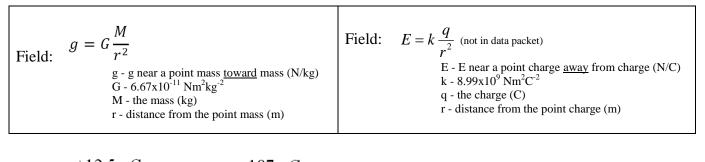

Example 2 - An electron travels through a region where there is a downward electric field of 325 N/C. What force in what direction acts on the electron, and what is its acceleration?

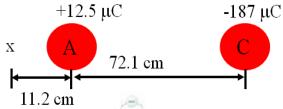
1.Ishunta Dunnit notices that a charge of -125 μ C experiences a force of 0.15 N to the right. What is the electric field and its direction? (1200 N/C left)	 2. Doan Botherme places a +12 mC charge into an upward 160 N/C electric field. What force in what direction does it experience? (1.9 N up)
3.Alfred O. Dadark is on a planet where a mass of 0.12 kg experiences a downward force of 7.80 N. What is the	4. Telly Vishun places an unknown charge into a known upward electric field of 612 N/C, and the charge experiences
gravitational field on the surface of this planet? (65 N/kg down)	a downward force of .851 N. What is the charge? (-1.39 mC)
5. Sal F. Hone levitates a 0.00125 kg ball with an upward elect (Hint gravity = electrical force) (+20.8 μ C) Eq = mg	ric field of 590 N/C. What is the charge on the ball?

Noteguide for Point Charges and Masses - Videos 16F

Name_____

Field: $g = G \frac{M}{r^{2}}$ $g - g \text{ near a point mass toward mass (N/kg)}$ $G - 6.67 \times 10^{-11} \text{ Nm}^{2} \text{kg}^{-2}$ $M - \text{ the mass (kg)}$ $r - \text{ distance from the point mass (m)}$	Field: $E = k \frac{q}{r^2}$ (not in data packet) E - E near a point charge <u>away</u> from charge (N/C) k - 8.99x10 ⁹ Nm ² C ⁻² q - the charge (C) r - distance from the point charge (m)
--	---

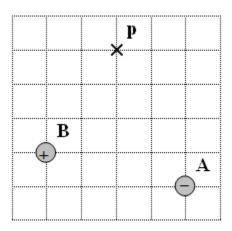



Example: What is the electric field 2.0 m to the right of a -21 μ C charge?

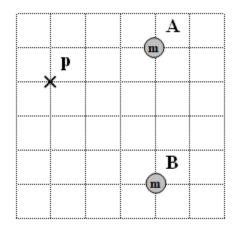
winteboards - work these out - If you don't get the	e ,
1. Vera Similitude measures the electric field 13.5 m to the	2. Vesta Buhl measures an electric field of 2,120 N/C, 67 cm
right of a -1.45 μ C charge. What electric field in what	from a charge of unknown value. The electric field is away
direction?	from the charge. What is the charge? $(+0.11 \ \mu C)$
(71.5 N/C to the left)	
2 Amelia Data management a ameritational field of 2 4 NU/La	
	4 Tone Dull management on algorithic field of 10 N/C what
3.Amelia Rate measures a gravitational field of 3.4 N/kg.	4. Tara Bull measures an electric field of 10. N/C what distance from an electron? (12 um)
What distance is she from the center of the earth?	4. Tara Bull measures an electric field of 10. N/C what distance from an electron? (12 μ m)
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	
What distance is she from the center of the earth?	

Noteguide for Fields in Linear Arrays - Videos 16G1

Name


Example: What is the electric field at the x?

1. Find the gravitational	field at p: (49.0 N/kg to the left)	
(m) 1.80×10^6 m (p)	9.10x10 ⁶ m	m
$2.70 \times 10^{24} \text{ kg}$		8.20x10 ²⁴ kg
200000000		
2. Find the electrical fiel		
(p) 13.0 m (-)	21.0 m	(+)
-2.30 µ0	C	+9.10 μC


Noteguide for Fields in Non Linear Arrays - Videos 16G2 Name_

I think you will be OK if you pick only one of these. They are a lot like the vector force ones. If you do both that would be better - but I will leave that up to you.

Find the electric field at point p. Charge A is -3.20 μ C, B is +4.40 μ C, and each grid line is a meter. (2640 N/C right and up at 28.1° with the x axis)

Find the gravitational field at point p. Mass A is 1.60×10^{12} kg, B is 3.9×10^{12} kg, and each grid line is a meter. (21.5 N/kg right and down at 18.6° with the x axis)

