$$
E=\frac{F}{q} \quad g=\frac{F}{m} \quad E=-\frac{\Delta V_{e}}{\Delta r} \quad g=-\frac{\Delta V_{g}}{\Delta r} \quad \text { (Assume all these fields are uniform) }
$$

1. A gravitational field increases the potential of a mass from $35.0 \mathrm{~J} / \mathrm{kg}$ at point A to $89.0 \mathrm{~J} / \mathrm{kg}$ at point B in a vertical distance of 2.50 m . What is the field strength, and what force does it exert on a 23.0 kg mass? Does the field point toward B or A? ($21.6 \mathrm{~N} / \mathrm{kg}, 497 \mathrm{~N}$, toward A)
2. An electric field exerts a Southerly force of 1.30 N on $\mathrm{a}+780 . \mu \mathrm{C}$ charge. What is the change in potential if you displace yourself 5.30 m to the north? (+8830 v)
3. A gravitational field exerts a force of $140 . \mathrm{N}$ on a 17.0 kg mass away from point B and toward point A that is vertically displaced from B a distance of 45.0 m . What is the field strength? What is the change in gravitational potential if you go from B to A? ($8.24 \mathrm{~N} / \mathrm{kg}$ - $-37 \mathrm{~J} / \mathrm{kg}$)
4. An upward electric field has a strength of $23,400 \mathrm{~N} / \mathrm{C}$. What is the change in potential if you displace yourself upward 3.40 cm ? What force will it exert on an electron? A proton?
($-796 \mathrm{~J} / \mathrm{C}$ or $\mathrm{V}, 3.75 \times 10^{-15} \mathrm{~N}$ down, $3.75 \times 10^{-15} \mathrm{~N}$ up)
5. If you move 12.0 m West in an electrical field, your electrical potential drops by 340 . V. What is this electrical field? What force does this field exert on a charge of $-56.0 \mu \mathrm{C}$? $\left(28.3 \mathrm{~V} / \mathrm{m}(\right.$ or $\mathrm{N} / \mathrm{C})$ to the West, $1.59 \times 10^{-3} \mathrm{~N}$ East)
6. A gravitational field has a strength of $1.10 \times 10^{-7} \mathrm{~N} / \mathrm{kg}$ to the right. If I move a mass 2.30 m to the left, what is the change in gravitational potential? What force does this exert on a 1.00 gram object? $\left(+2.53 \times 10^{-7} \mathrm{Jkg}, 1.10 \times 10^{-10} \mathrm{~N}\right)$
7. An electrical field changes electrical potential from 210 . V to $560 . \mathrm{V}$ when you move down 4.50 cm . What is the magnitude and direction of the electrical field, and what force does it exert on a $+2.40 \mu \mathrm{C}$ charge? ($7780 \mathrm{~V} / \mathrm{m}$ (or N / C) up, 0.0187 Nup)
8. An electrical field exerts a force of 78.0 N to the left on a $-12.0 \mu \mathrm{C}$ charge. What is the magnitude and direction of this electrical field? What is the change in electrical potential if you move 13.0 cm to the left? (6.50x $10^{6} \mathrm{~N} / \mathrm{Cr}$ right $+8.45 \times 10^{5} \mathrm{v}$)
9. The leftmost of two vertical parallel plates is held at -12.0 V , and the rightmost is held at +16.0 V . If they are separated by 3.20 cm , what is the electrical field between them? What force would it exert on an electron between the plates? $\left(875 \mathrm{~V} / \mathrm{m}\right.$ to the left, $1.40 \times 10^{-16} \mathrm{~N}$ to the right)
10. If you move a mass vertically from point A to point B in a uniform gravitational field, the potential changes from $-45.0 \mathrm{~J} / \mathrm{kg}$ to $-12.0 \mathrm{~J} / \mathrm{kg}$ in a distance of 3.40 m . What is the gravitational field strength, and which point is at a higher elevation, A or B? Does the field point toward A or B? What force does it exert on a 2.30 kg mass ($\mathrm{g}=9.71 \mathrm{~N} / \mathrm{kg}$ toward A, B is higher, 22.3 N)
$g=\frac{G M}{r^{2}} \quad E=\frac{k q}{r^{2}} \quad(\leftarrow$ not in data packet - memorize this $!!!!)$
11. The electric field is $52.0 \mathrm{~N} / \mathrm{C}$ downwards 54.0 cm above a charge. What is the charge, and is it positive or negative? $\left(-1.69 \times 10^{9} \mathrm{C}\right.$, negative)
12. What is the electric field $230 . \mathrm{m}$ above $\mathrm{a}+21.0 \mu \mathrm{C}$ charge? What direction is it? (3.57 N / c up)
13. Near a $-18.0 \mu \mathrm{C}$ charge there is an upward electric field of 450 . N/C. How far away is the point where this happens, and where is it, above or below the charge? (19.0 m , below)
14. There is an electric field of 310 . N/C upwards 88.0 cm above an unknown charge. What is the charge, and is it positive or negative? $\left(2.67 \times 10^{-8} \mathrm{C}\right.$, positive $)$
15. What is the electric field 2.70 m to the left of a $+8.20 \mu \mathrm{C}$ charge? What direction is it? $\left(1.0 \times 10^{4} \mathrm{~N} / \mathrm{C}\right.$, left $)$
16. At what distance from the center of a $6.90 \times 10^{24} \mathrm{~kg}$ planet is the gravitational field $4.50 \mathrm{~N} / \mathrm{kg}$? $\left(1.01 \times 10^{7} \mathrm{~m}\right)$
17. What is the acceleration of gravity on the surface of a planet with a mass of $6.39 \times 10^{23} \mathrm{~kg}$ and a radius of $3.39 \times 10^{6} \mathrm{~m}$? (Mars) (3.71 N/kg)
18. What is the gravitational field 4.50 m to the right of a $2.80 \times 10^{12} \mathrm{~kg}$ point mass? What direction? $(9.22 \mathrm{~N} / \mathrm{kg}$ left $)$
19. Near a $3.40 \times 10^{12} \mathrm{~kg}$ point mass there is a field of $5.60 \mathrm{~N} / \mathrm{kg}$ to the left. What distance are we from the point mass, and where is the mass in relation to us? (6.36 m , the mass is to our left)
20. There is a gravitational field of $14.0 \mathrm{~N} / \mathrm{kg}$ to the right, 7.20 m from a point mass. What is the mass, and where are we in relation to the mass? $\left(1.09 \times 10^{13} \mathrm{~kg}\right.$, we are to the left of the mass)
21.

A. Find the gravitational field at p and q: (p: $8.29 \mathrm{~N} / \mathrm{kg}$ left, q: $8.23 \mathrm{~N} / \mathrm{kg}$ left)
(m) $4.30 \times 10^{6} \mathrm{~m}$
(p)
$6.20 \times 10^{6} \mathrm{~m}$
(m)
$4.80 \times 10^{6} \mathrm{~m}$
(q)
$3.50 \times 10^{24} \mathrm{~kg}$
$2.50 \times 10^{24} \mathrm{~kg}$

B. Find the gravitational field at p and q: (p: $10.7 \mathrm{~N} / \mathrm{kg}$ right, q: $28.3 \mathrm{~N} / \mathrm{kg}$ left)
(m)
$6.30 \times 10^{6} \mathrm{~m}$
(p)
$5.60 \times 10^{6} \mathrm{~m}$
(m) $4.90 \times 10^{6} \mathrm{~m}$
(q)
$5.90 \times 10^{24} \mathrm{~kg}$
$9.70 \times 10^{24} \mathrm{~kg}$
C. Find the electrical field at p and q: (p: $2.37 \mathrm{~N} / \mathrm{C}$ left, $\mathrm{q}: 452 \mathrm{~N} / \mathrm{C}$ left)
(p) $\quad 18.0 \mathrm{~m}$

32.0 m

- 13.0 m
(q)
$+1.20 \mu \mathrm{C}$
$-8.60 \mu \mathrm{C}$
(a)
D. Find the electrical field at p and q: (p: $54.9 \mathrm{~N} / \mathrm{C}$ right, q: $2.01 \mathrm{~N} / \mathrm{C}$ right)
(p) $\quad 26.0 \mathrm{~m}$

(q) $\quad 24.0 \mathrm{~m}$
\bigcirc
$-4.70 \mu \mathrm{C}$

22. Each grid line is a meter. Calculate the field at point p.

