Problems from A16.1: Vector Forces

$\mathrm{F}=\mathrm{ma} \quad E=\frac{F}{q} \quad g=\frac{F}{m}$

1. An electron is in a 2310 N/C electric field to the West. What is its acceleration? Look up the charge and mass in your data packet. ($4.06 \times 10^{14} \mathrm{~ms}^{-2}$ East)
2. A proton accelerates North at $3.80 \times 10^{12} \mathrm{~ms}^{-2}$. What is the electric field? (3.97x10 N / C North)
3. There is a upward force of 0.0120 N on a charge inside a downward electric field of 450 . N/C. What is the charge? Is it positive or negative? $\left(-2.67 \times 10^{-5} \mathrm{C}\right.$, negative)
4. The planet Xzarr exerts a force of 67.0 N on a 4.50 kg mass. What is the gravitational field strength? (14.9 N / kg)
5. A region in space has a gravitational field strength of $1.40 \mathrm{~N} / \mathrm{kg}$. What mass would experience a force of 780 . N. (557 kg)

$$
E=\frac{F}{q} \quad g=\frac{F}{m} \quad E=-\frac{\Delta V_{e}}{\Delta r} \quad \text { (Electrical force upwards = Gravitational force downwards) }
$$

6. A 0.310 -gram object with a charge of $-1.80 \mu \mathrm{C}$ is suspended against gravity between two horizontal parallel plates. The plates have a voltage of 150 . V across them, what is their separation? Which plate is the positive plate? $(8.88 \mathrm{~cm}$, top)
7. A 0.980 -gram object with a charge of $+0.780 \mu \mathrm{C}$ is suspended against gravity between two horizontal parallel plates that are 3.80 cm apart. What voltage does this require, and which plate is the positive plate? (468 v, botom)
8. A 0.450 -gram object is suspended against gravity between two horizontal parallel plates that are 1.50 cm apart. What charge does the object have if this requires 13.0 V to accomplish? If the top plate is negative, is the charge positive or negative? ($5.09 \mathrm{\mu C}$, positive)
9. An object with a charge of $+4.50 \mu \mathrm{C}$ is suspended against gravity between two horizontal parallel plates that are 1.4 cm apart. What mass does the object have if this requires $260 . \mathrm{V}$ to accomplish? Which plate is positive, the top or the bottom? $(8.52 \mathrm{~g}$, bottom $)$
10. A 2.30 gram object is suspended against gravity between two horizontal parallel plates that are 3.80 cm apart. What charge does the object have if this requires 75.0 V to accomplish? If the positive plate is on the top, is the charge positive or negative? $\left(11.4 \mu \mathrm{C}\left(1.14 \times 10^{-5} \mathrm{C}\right)\right.$, negative $)$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad F_{E}=k \frac{q_{1} q_{2}}{r^{2}}$ - Inverse square force laws
11. At what distance from the center of a $3.40 \mu \mathrm{C}$ charge is there a force of 7.80 N on a $1.10 \mu \mathrm{C}$ charge? Is it attracted or repelled? $(6.57 \mathrm{~cm}$, repelled)
12. A $-3.80 \mu \mathrm{C}$ charge is attracted with a force of 45.0 N to another charge that is 56.0 cm away. What is the other charge? Is it positive or negative? $\left(413 \mu \mathrm{C}\left(4.13 \times 10^{4} \mathrm{C}\right)\right.$, positive $)$
13. At what distance from the center of a $5.97 \times 10^{24} \mathrm{~kg}$ planet is the force of attraction on a 6.00 kg mass 23.0 N ($1.02 \times 10^{7} \mathrm{~m}$)
14. On the surface of a $7.30 \times 10^{6} \mathrm{~m}$ radius planet, there is a 57.0 N force on a 5.10 kg mass. What is the planet's mass? $\left(8.93 \times 10^{24} \mathrm{~kg}\right)$
15. Two point charges have a force of attraction of $140 . \mathrm{N}$ when they are 12.0 m away from each other. What is their force of attraction when they are 17.0 m away from each other? (69.8 N)
16. The force of gravity between two spherical masses is $5.90 \times 10^{-12} \mathrm{~N}$ when their centers are separated by 1.80 m . If they are moved so that the force of attraction is $7.80 \times 10^{-12} \mathrm{~N}$, what is their new separation? $(1.57 \mathrm{~m})$
17. Two point charges have a force of repulsion of 56.0 N when they are 45.0 cm from each other. At what separation is the force 98.0 N ? $(34.0 \mathrm{~cm})$
18. The force of gravity between two spherical masses is $6.00 \times 10^{-11} \mathrm{~N}$ when their centers are separated by 1.10 m . If they are moved so that their separation is 3.20 m , what is the force of attraction? $\left(7.09 \times 10^{-12} \mathrm{~N}\right)$
19. Two point charges have a force of attraction of $160 . \mathrm{N}$ when they are 2.50 m apart. If they are moved so their new force of attraction is 240 . N, what is their separation? $(2.04 \mathrm{~m})$
20. Two point masses are attracted by a force of $1.20 \times 10^{-12} \mathrm{~N}$ when they are 45.0 cm apart. If they are moved so that they are 150.0 cm apart, what is their new force of attraction? $\left(1.08 \times 10^{-13} \mathrm{~N}\right)$

21. Linear Arrays:

A. Find the net force and direction on the charges (A: 72.4 N right, B: 111 N left, C: 39.0 N right)
(A) $\quad 23.0 \mathrm{~cm}$
$-17.0 \mu \mathrm{C}$
(B)
35.0 cm
$+18.0 \mu \mathrm{C}$
$+45.0 \mu \mathrm{C}$
B. Find the net force and direction on the charges: (A: 12.2 N left, B: 91.1 N right, C: 78.9 N left)
(A)
18.0 cm
(B)
42.0 cm
(C)
$+11.0 \mu \mathrm{C}$
$+12.0 \mu \mathrm{C}$
$-89.0 \mu \mathrm{C}$
C. Find the net force and direction on the masses: (A: 39.2 N right, B: 3.10 N left, C: 36.1 N left)
(A)
$9.80 \times 10^{6} \mathrm{~kg}$
(B)
3.10 m
$1.10 \times 10^{6} \mathrm{~kg}$
(C)
$2.30 \times 10^{6} \mathrm{~kg}$
D. Find the net force and direction on the masses: (A: 10.5 N right, B: 11.9 N right, 22.4 N left)
(A)
6.50 m
(B)
$3.50 \times 10^{6} \mathrm{~kg}$
9.70 m
(C)
$7.90 \times 10^{6} \mathrm{~kg}$

22. Non-Linear Arrays:

Each grid line is a meter. Calculate the force on object A. Draw the force vector and label its magnitude and direction.
A. A is $+160 . \mu \mathrm{C}$, and B is -110 . $\mu \mathrm{C}$, and C is +630 . $\mu \mathrm{C}$.

