Field Theory Equations:

Gravity	Electric
Force: $F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$ Field: $g=\frac{F}{m}$ g - gravitational field strength (N / kg) F - force exerted by field on the mass (N) m - the mass (kg) $g=G \frac{M}{r^{2}}$ g - g near a point mass toward mass $(\mathrm{N} / \mathrm{kg})$ $\mathrm{G}-6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ M - the mass (kg) r - distance from the point mass (m)	Force: $F_{\mathrm{E}}=k \frac{q_{1} q_{2}}{r^{2}}$ $\mathrm{F}_{\mathrm{E}}-$ Coulomb Force (of repulsion) (N) k-8.99x $10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$ r - distance separating centers (m) $\mathrm{q}_{1 \& 2}$ - the two charges (C) Field: $E=\frac{F}{q}$ E - electric field strength (N/C) F - force exerted by field on charge (N) q - the charge (C) $E=k \frac{q}{r^{2}}$ (not in data packet) E - E near a point charge away from charge (N/C) $\mathrm{k}-8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$ q - the charge (C) r - distance from the point charge (m)
Energy: $\begin{aligned} & E_{\mathrm{P}}= m V_{g} \\ & \mathrm{E}_{\mathrm{p}}-\text { gravitational potential energy }(\mathrm{J}) \\ & \mathrm{V}_{\mathrm{g}}-\text { gravitational potential }(\mathrm{J} / \mathrm{kg}) \\ & \mathrm{m}-\text { the mass }(\mathrm{kg}) \\ & W= m \Delta V_{g} \\ & \mathrm{~W}-\text { work required to move a mass }(\mathrm{J}) \\ & \Delta \mathrm{V}_{\mathrm{g}}-\text { change in } \\ & \quad \Delta \mathrm{V}=\left(\mathrm{V}_{\text {fravavitat }}-\mathrm{V}_{\text {initional }}\right) \\ & \mathrm{m} \text { - the mass }(\mathrm{kg}) \end{aligned}$	Energy: $\begin{aligned} & E_{\mathrm{P}}=q V_{\mathrm{e}} \\ & \mathrm{E}_{\mathrm{p}} \text { electrical potential energy (J) } \\ & \mathrm{V}_{\mathrm{e}} \text { electrical potential (J/C or Volts) } \\ & \mathrm{q} \text { - the charge (C) } \\ & W=q \Delta V_{e} \\ & \mathrm{~W} \text { - work required to move a charge (J) } \\ & \Delta \mathrm{V}_{\mathrm{e}} \text { - change in electrical potential (J/C or } \\ & \mathrm{Vollts})^{\Delta \mathrm{V}=\left(\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {initial }}\right)} \\ & \mathrm{q} \text { - the charge (C) } \end{aligned}$
Potential: $V_{g}=-\frac{G M}{r}$ V_{g} - gravitational potential near a point mass (J / kg) G-6.67×10 $0^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ M - the mass (kg) r - distance from the mass (m) $g=-\frac{\Delta V_{g}}{\Delta r}$ g - gravitational field strength (N / kg) $\Delta \mathrm{V}_{\mathrm{g}}$ - change in gravitational potential (J / kg) $\Delta \mathrm{r}$ - displacement in direction of the field (m)	Potential: $V_{e}=\frac{k q}{r}$ V_{e} - electrical potential near a point charge (J/C or Volts) $\mathrm{k}-8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$ q - the charge (C) r - distance from the charge (m) $E=-\frac{\Delta V_{e}}{\Delta r}$ E - Electric field strength (N / C or V / m) $\Delta \mathrm{V}_{\mathrm{e}}$ - change in electrical potential (J/C or Volts) Δr - displacement in direction of the field (m)
$E_{\mathrm{p}}=-\frac{G M m}{r}$ E_{p} - gravitational potential energy of two masses (J) G-6.67×10 ${ }^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ M, m - the two masses (kg) r - distance separating centers (m)	$\begin{aligned} E_{\mathrm{P}}= & \frac{k q_{1} q_{2}}{r} \\ & \mathrm{E}_{\mathrm{p}} \text { - electrical potential energy of two charges (J) } \\ & \mathrm{k}-8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \\ & \mathrm{q}_{1 \& 2} \text { - the two charges }(\mathrm{C}) \\ & \mathrm{r} \text { - distance separating centers (m) } \end{aligned}$

