Field Theory Equations:

Gravity		Electric
Force:	$F_{G} = G \frac{m_{1}m_{2}}{r^{2}}$ $F_{G} - \text{Force of gravity (of attraction) (N)}$ $G - 6.67 \times 10^{-11} \text{ Nm}^{2} \text{kg}^{-2}$ $r - \text{distance separating centers (m)}$ $m_{1\&2} - \text{the two masses (kg)}$	Force: $F_{\rm E} = k \frac{q_1 q_2}{r^2}$ $F_{\rm E} - \text{Coulomb Force (of repulsion) (N)}$ $k - 8.99 \times 10^9 \text{Nm}^2 \text{C}^{-2}$ $r - \text{distance separating centers (m)}$ $q_{1\&2} - \text{the two charges (C)}$
Field:	$g = \frac{F}{m}$ g - gravitational field strength (N/kg) F - force exerted by field on the mass (N) m - the mass (kg)	Field: $E = \frac{r}{q}$ E - electric field strength (N/C) F - force exerted by field on charge (N) q - the charge (C)
	$g = G \frac{M}{r^2}$ g - g near a point mass toward mass (N/kg) G - 6.67x10 ⁻¹¹ Nm ² kg ⁻² M - the mass (kg) r - distance from the point mass (m)	$E = k \frac{q}{r^2}$ (not in data packet) E - E near a point charge <u>away</u> from charge (N/C) k - 8.99x10 ⁹ Nm ² C ⁻² q - the charge (C) r - distance from the point charge (m)
Energy:	$E_{\mathbf{p}} = mV_{\mathbf{g}}$ $E_{\mathbf{p}} - \text{gravitational potential energy (J)}$ $V_{\mathbf{g}} - \text{gravitational potential (J/kg)}$ m - the mass (kg)	Energy: $E_{\mathbf{p}} = qV_{\mathbf{e}}$ $E_{\mathbf{p}}$ - electrical potential energy (J) $V_{\mathbf{e}}$ - electrical potential (J/C or Volts) q - the charge (C)
	$W = m\Delta V_g$ W - work required to move a mass (J) ΔV_g - change in gravitational potential (J/kg) $\Delta V = (V_{\text{final}} - V_{\text{initial}})$ m - the mass (kg)	$W = q \Delta V_e$ W - work required to move a charge (J) ΔV_e - change in electrical potential (J/C or Volts) $\Delta V = (V_{\text{final}} - V_{\text{initial}})$ q - the charge (C)
Potential:	$V_g = -\frac{GM}{r}$ $V_g - \text{gravitational potential near a point mass (J/kg)}$ $G - 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$ $M - \text{the mass (kg)}$ $r - \text{distance from the mass (m)}$	Potential: $V_e = \frac{kq}{r}$ $V_e - \text{electrical potential near a point charge (J/C or Volts)}$ $k - 8.99 \times 10^9 \text{ Nm}^2 \text{C}^{-2}$ $q - \text{the charge (C)}$ $r - \text{distance from the charge (m)}$
	$g = -\frac{\Delta V_g}{\Delta r}$ g - gravitational field strength (N/kg) ΔV_g - change in gravitational potential (J/kg) Δr - displacement in direction of the field (m)	$E = -\frac{\Delta V_e}{\Delta r}$ E - Electric field strength (N/C or V/m) ΔV_e - change in electrical potential (J/C or Volts) Δr - displacement in direction of the field (m)
	$E_{\mathbf{p}} = -\frac{GMm}{r}$ $E_{p} - \text{gravitational potential energy of two masses (J)}$ $G - 6.67 \times 10^{-11} \text{ Nm}^{2} \text{kg}^{-2}$ $M,m - \text{the two masses (kg)}$ $r - \text{distance separating centers (m)}$	$E_{\mathbf{p}} = \frac{kq_{1}q_{2}}{r}$ $E_{\mathbf{p}} - \text{electrical potential energy of two charges (J)}$ $k - 8.99 \times 10^{9} \text{ Nm}^{2}\text{C}^{-2}$ $q_{1\&2} - \text{ the two charges (C)}$ $r - \text{distance separating centers (m)}$