Name
Show your work, and circle your answers and use sig figs to receive full credit.

$$
E=\frac{F}{q} \quad g=\frac{F}{m} \quad \mathrm{~F}=\mathrm{ma}
$$

1. What is the gravitational force on a 3.40 kg mass in a gravitational field with a strength of $9.81 \mathrm{~N} / \mathrm{kg}$?
2. A $-140 . \mu \mathrm{C}$ charge experiences a force of 1.50 N to the right. What is the magnitude and direction of the electric field?
3. A 3.20 kg mass on the moon experiences a force of 5.15 N . What is the gravitational field strength on the moon?
4. A $72,100 \mathrm{~N} / \mathrm{C}$ electrical field to the right exerts what force on a proton? (Force and direction)
5. A proton accelerates North at $9.58 \times 10^{8} \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the magnitude and direction of the electric field?
6. An electron is in a $317 \mathrm{~N} / \mathrm{C}$ electric field to the West. What is the magnitude and direction of its acceleration?
$g=\frac{G M}{r^{2}} \quad E=\frac{k q}{r^{2}} \quad(\leftarrow$ not in data packet - memorize this!!!!)
7. What is the electrical field 82.0 cm to the right of a $-2.10 \mu \mathrm{C}$ charge? (Magnitude and direction)
8. Where is the electrical field $1.25 \times 10^{4} \mathrm{~N} / \mathrm{C}$ straight up in the proximity of a $13.0 \mu \mathrm{C}$ charge. (Location and distance)
9. I am 2.15 m to the left of an unknown charge, and there is an electric field of $1.65 \times 10^{5} \mathrm{~N} / \mathrm{C}$ to the right. What is the magnitude and polarity of the charge? (How many C , and is it + or -)

10a. What is the gravitational field on the surface of a planet with a mass of $1.60 \times 10^{23} \mathrm{~kg}$, and a radius of $1.85 \times 10^{6} \mathrm{~m}$?

10b. What is the gravitational field 3.50 m to the left of a (very dense) mass of $6.40 \times 10^{12} \mathrm{~kg}$? (Magnitude and direction)
11. Where in the proximity of a 5.00 kg shot put is the gravitational field $2.08 \times 10^{-11} \mathrm{~N} / \mathrm{kg}$ to the right? (Location and distance)
12. I am 15.0 m to the right of an unknown mass and there is a gravitational field of $2.16 \mathrm{~N} / \mathrm{kg}$ due to the mass. Which direction is the field, and what is the mass?
13. Find the gravitational field at p and q :
(m) $3.40 \times 10^{6} \mathrm{~m}$
(p)
$5.10 \times 10^{6} \mathrm{~m}$
(m) $3.60 \times 10^{6} \mathrm{~m}$
(q)
$1.20 \times 10^{24} \mathrm{~kg}$

$$
\begin{aligned}
& p= \\
& q=
\end{aligned}
$$

14. Find the electric field at p and q :
(p) 12.0 m

$+$| + |
| :---: |
| $+4.50 \mu \mathrm{C}$ |

23.0 m

- 11.0 m
(q)
$\mathrm{p}=$ \qquad
$\mathrm{q}=$ \qquad

15. Find the electric field at point p . Draw the electric field vector, and label its magnitude and direction. Charge A is $-3.20 \mu \mathrm{C}$, B is $+2.40 \mu \mathrm{C}$, and each grid line is a meter.

16. Find the gravitational field at point p . Draw the gravitational field vector, and label its magnitude and direction. Mass A is $2.50 \times 10^{12} \mathrm{~kg}, \mathrm{~B}$ is $5.10 \times \mathrm{xs} 10^{12} \mathrm{~kg}$, and each grid line is a meter.

