Name
Show your work, and circle your answers and use sig figs to receive full credit.
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad F_{E}=k \frac{q_{1} q_{2}}{r^{2}}$ - Inverse square force laws

1. What is the force of attraction between a $-10.1 \mu \mathrm{C}$ charge and $\mathrm{a}+34.1 \mu \mathrm{C}$ charge if their centers are 67.0 cm apart? Is it a force of attraction or repulsion?
2. At what distance is the force of repulsion between a 2.00 C charge and a 3.00 C charge equal to 4.45 N (1 pound of force, or 16 ounces of force)
3. What is the force of gravity between a 23.0 kg object on the surface of the moon. The moon has a mass of $7.35 \times 10^{22} \mathrm{~kg}$, and a radius of $1.738 \times 10^{6} \mathrm{~m}$.
4. 450 Kg wrecking ball experiences a force of attraction of $6.30 \times 10^{-10} \mathrm{~N}$ to a metal sphere that is 15.0 m away. What is the mass of the sphere?
5. Two point masses have a force of attraction of $2.30 \times 10^{-12} \mathrm{~N}$ when they are separated by 56.0 cm . What is their separation if the force of attraction is $5.80 \times 10^{-12} \mathrm{~N}$?
6. Two point charges have a force of repulsion of 45.3 N when they are 2.30 m separated. What is the force of repulsion if they are separated by only 1.25 m ?
7. Two point charges attract each other with a force of 1.40 N when they are 2.20 m apart. How far apart are they if the force of attraction is 5.60 N ?
8. Find the net force and direction on masses A, B and C :
(A)
2.80 m
(B)
4.50 m
$3.70 \times 10^{6} \mathrm{~kg}$
$1.90 \times 10^{6} \mathrm{~kg}$
$\mathrm{A}=$
$B=$ \qquad
$\mathrm{C}=$ \qquad
9. Find the net force and direction on charges A, B and C :
(A)
34.0 cm
(B) $\quad 23.0 \mathrm{~cm}$
(C)
$-81.0 \mu \mathrm{C}$
$+52.0 \mu \mathrm{C}$
$\mathrm{A}=$ \qquad
$B=$ \qquad
$\mathrm{C}=$ \qquad
10. Each grid line is a meter. Charge A is $-430 . \mu \mathrm{C}$, and charge B is $+120 . \mu \mathrm{C}$, and C is $+780 . \mu \mathrm{C}$. Calculate the force on charge C . Draw the force vector and label its magnitude and direction.

11. Each grid line is a meter. Mass A is $1.20 \times 10^{6} \mathrm{~kg}$, and mass B is $3.10 \times 10^{6} \mathrm{~kg}$, and C is $6.80 \times 10^{6} \mathrm{~kg}$. Calculate the force on mass A. Draw the force vector and label its magnitude and direction.

