Worksheet 14A: Specific Heat, Latent Heat, Phase Change Graphs, and Calorimetry

Objective A: Caloric and Joule's discovery
 Questions:

1. What was the caloric model?
2. How did it fail to explain the heating of drill bits when they got dull?

Objective B: Specific Heat: $\mathbf{Q}=\mathbf{m C} \Delta T$ Questions:

3. What is the specific heat of a substance? What does it mean?

Problems:
4. What heat is needed to raise 3.4 kg of lead from $23^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$? (1.5E4 J)
5. If 23.0 kg of copper at $21.0^{\circ} \mathrm{C}$ absorbs 45.6 kJ of heat, what will be its final temperature? $\left(26.1^{\circ} \mathrm{C}\right)$
6. If some aluminum at $57.0^{\circ} \mathrm{C}$, cools to $24.1^{\circ} \mathrm{C}$, and gives off 13.4 kJ of heat, what is its mass? (453 g)
7. A 35.0 g of a mystery substance absorbs 314 J of heat and raises its temperature by $2.14{ }^{\circ} \mathrm{C}$. What is its specific heat? $\left(4190 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)$

Some specific heats $\left(\right.$ in $\mathrm{J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}$)	
H2O liquid	4186
H2O ice	2100
H2O steam	2010
Aluminum	900
Iron	450
Copper	390
Lead	130

8. A 125 Watt 100% efficient heater is immersed in a 503 ml container full of water. In what time will the heater heat the water from $21.0{ }^{\circ} \mathrm{C}$ to boiling? (1330 s)
9. Another 1250 Watt heater can raise 2.35 liters of water from $14.5{ }^{\circ} \mathrm{C}$ to $36.6{ }^{\circ} \mathrm{C}$ in three and a half minutes. What is its efficiency? (.828 or 82.8%)

Objective C: Latent Heat: $\mathbf{Q}=\mathbf{m L}$

Questions:

10. What is the latent heat of a substance? What does it mean?
11. Why is the latent heat of vaporization almost always more?

Problems:
12. What heat does it take to melt 25 kg of solid iron already at the melting point? (7.2E6 J)

Some Latent heats $\left(\right.$ in $\left.\mathrm{Jkg}^{-1}\right)$		
	Fusion	Vap.
H 2 O	3.33 E 5	22.6 E 5
Iron	2.89 E 5	63.40 E 5
Lead	0.25 E 5	8.70 E 5

13. 2350 J of heat will melt how much lead? $(94 \mathrm{~g})$
14. If it takes $45,120 \mathrm{~J}$ of heat to melt 172 g of a mystery substance, what is its latent heat of fusion? (2.62E5 J / kg)
15. A runner sweats away 3.5 kg of water through evaporation. What heat did they dissipate? (7.9E6 J)
16. What heat do you need to heat 2.15 Kg of ice at $-34.0^{\circ} \mathrm{C}$ to water at $75.0^{\circ} \mathrm{C}$? $\left(1.54 \times 10^{6} \mathrm{~J}\right)$
17. What heat do you need to heat 23.5 Kg of ice at $-167.0^{\circ} \mathrm{C}$ to water at $92.0^{\circ} \mathrm{C}$? $\left(2.51 \times 10^{7} \mathrm{~J}\right)$
18. What heat do you need to heat 3.61 Kg of water at $76.0^{\circ} \mathrm{C}$ to steam at $142{ }^{\circ} \mathrm{C} ?\left(8.83 \times 10^{6} \mathrm{~J}\right)$

Objective E: Calorimetry: Heat Lost = Heat Gained Problems:

19. 112. grams of a mystery liquid at $83.0^{\circ} \mathrm{C}$ is mixed with 564 grams of water initially at $22.0^{\circ} \mathrm{C}$. The final temperature of the mixture is $33.0^{\circ} \mathrm{C}$. What is the specific heat of the mystery liquid? (Assuming no heat was lost to the surroundings) ($4640 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$)
1. A piece of lead $\left(\mathrm{c}=130 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}\right)$ at $82.0^{\circ} \mathrm{C}$ is mixed with 112 grams of water and an 87.5 g aluminum $\left(\mathrm{c}=900 . \mathrm{J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}\right)$ calorimeter cup initially at $25.0^{\circ} \mathrm{C}$. The final temperature of the system is $56.0^{\circ} \mathrm{C}$. What is the mass of the piece of lead? (Assuming no heat was lost to the surroundings) (5.02 kg)
2. 89.2 g of a mystery substance is at $99.20^{\circ} \mathrm{C}$, and it is placed in a 95.0 g iron container holding 216 ml of water both at $21.01{ }^{\circ} \mathrm{C}$. The final temperature is $23.38^{\circ} \mathrm{C}$. What is the specific heat of the substance? $\left(332 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}\right)$
3. A 347 g piece of copper at $98.0^{\circ} \mathrm{C}$ is placed in a Styrofoam cup containing 259 ml of water at $18.0^{\circ} \mathrm{C}$. What will be the final temperature of equilibrium? (Ignore the Styrofoam) $\left(26.9^{\circ} \mathrm{C}\right)$
4. A 13.5 g piece of aluminum at $93.9^{\circ} \mathrm{C}$ is placed in an 82.0 g iron calorimeter containing 203 g of water both at $23.0^{\circ} \mathrm{C}$. What will be the final temperature? $\left(24.0^{\circ} \mathrm{C}\right)$
5. If you drop a 16 g ice cube at $0.0{ }^{\circ} \mathrm{C}$ into a Styrofoam cup containing 241 ml of water at $20.0{ }^{\circ} \mathrm{C}$ what will be the final temperature? $\left(13.8^{\circ} \mathrm{C}\right)$
6. You take an ice cube out of the freezer at $-17.0^{\circ} \mathrm{C}$, and drop it into a 67.0 g aluminum cup containing 308 g of water at $23.0^{\circ} \mathrm{C}$. The final temperature is observed to be $12.7^{\circ} \mathrm{C}$. What is the mass of the ice cube? $(33.0 \mathrm{~g})$

Objective D: Phase change graphs
Here is a phase change graph for 0.0160 kg of a substance that starts out as a solid at $0^{\circ} \mathrm{C}$:

26. Label the graph where the KE is increasing, and where the PE is increasing.
27. What is the melting point? What is the boiling point? $\left(30 .{ }^{\circ} \mathrm{C}, 80 .{ }^{\circ} \mathrm{C}\right)$
28. What is the specific heat of the solid, liquid and gas phase? ($104 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}, 188 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}, 156 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$)
29. What is the latent heat of fusion and vaporisation? ($9380 \mathrm{~J} / \mathrm{kg}, 15,600 \mathrm{~J} / \mathrm{kg}$)

Here is another phase change graph for 0.026 kg of a substance that starts out as a solid at $0^{\circ} \mathrm{C}$:

30. Label the graph where the KE is increasing, and where the PE is increasing.
31. What is the melting point? What is the boiling point? $\left(40 .{ }^{\circ} \mathrm{C}, 80 .{ }^{\circ} \mathrm{C}\right)$
32. What is the specific heat of the solid, liquid and gas phase? ($48.1 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}, 240 . \mathrm{J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}, 76.9 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$)
33. What is the latent heat of fusion and vaporisation? $(7,690 \mathrm{~J} / \mathrm{kg}, 11,500 \mathrm{~J} / \mathrm{kg})$

IB Physics

FA 14.1 - Heat and Calorimetry
Name \qquad
Favorite Wilderness Experience
Show your work, and circle your answers and use sig figs to receive full credit.
When you have finished this, go to the website and check your answers. If you got a problem wrong, cross it off on the front, and do it correctly on the back. This is a graph of temperature v . heat added for a 0.218 kg sample of unknown. It starts as a solid, and ends as a gas.

1. What is the melting temperature and the boiling temperature of this substance? Label the solid, liquid and gaseous phases.
(Melt $=30^{\circ} \mathrm{C}$, Boil $=50^{\circ} \mathrm{C}$, solid 0-300 J added, Liquid 700-1100 J added, Gas 1700-2000 J added.)
2. What is the latent heat of vaporisation? (Boiling) ($2750 \mathrm{~J} / \mathrm{kg}$)
3. What is the specific heat of the liquid phase?
(91.7 J/kg ${ }^{\circ} \mathrm{C}$)
4. What heat do you need to heat 3.29 Kg of water at $21.0^{\circ} \mathrm{C}$ to steam at $175^{\circ} \mathrm{C}$? (For $\mathrm{H}_{2} \mathrm{O}: \mathrm{C}_{\text {ice }}=2100 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{f}}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{Kg}, \mathrm{C}_{\text {water }}=4186 \mathrm{~J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{V}}=22.6 \times 10^{5} \mathrm{~J} / \mathrm{Kg}, \mathrm{C}_{\text {steam }}=2010 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$) (9.02×10^{6} J)
5. 500. grams of a mystery liquid at $45.0^{\circ} \mathrm{C}$ is mixed with 300 . grams of water ($\mathrm{C}=4186 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{C}$) initially at $22.0^{\circ} \mathrm{C}$. The final temperature of the mixture is $33.0^{\circ} \mathrm{C}$. What is the specific heat of the mystery liquid?
(Assuming no heat was lost to the surroundings)
($2.30 \times 10^{3} \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$)

Name \qquad New Age Name
Show your work, round to the correct significant figures, circle your answers, and label them with units.
When you have finished this, go to the website and check your answers. If you got a problem wrong, cross it off on the front, and do it correctly on the back. $\left(1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=101.3 \mathrm{kPa}=14.7 \mathrm{psi}=760 \mathrm{Torr} ; 1 \mathrm{~m}^{3}=1000\right.$ liters; $\left.\mathrm{p}_{\text {absolute }}=\mathrm{p}_{\mathrm{gauge}}+1 \mathrm{~atm} ;\right)$ 1. Convert 1340. Torr absolute to gauge pressure psi. Convert 87.3 kpa gauge to Torr absolute
2. Fred has 1.65 mols of methane gas at $87.2^{\circ} \mathrm{C}$ at $56.3 \mathrm{kPa}(1 \mathrm{kPa}=1000 \mathrm{~Pa})$. What is the volume it occupies?
3. Maryland has 217 grams of Neon (molar mass $20.1797 \mathrm{~g} / \mathrm{mol}$) gas in 519 liters at gauge pressure of $6.97 \times 10^{4} \mathrm{~Pa}$. What must the temperature be in Celsius? (1000 liters $=1 \mathrm{~m}^{3}$)
4. An aerosol can is at an absolute pressure of 381 Boogalas when it is at 293 K . If I put it in liquid nitrogen and lower its temperature to 77.0 K , what is the new pressure in Boogalas? (1000 milli Boogalas = 1 Boogala) (Assume it does not leak, and the volume remains constant)
5. A Helium tank contains 3.42 kg of helium and is at a gauge pressure of 145 psi . What will be the gauge pressure when you have released 1.13 kg of helium?

Worksheet 13.1: Kinetic Theory and the Ideal Gas Law

Objective F: Ideal Gas Law: $\mathbf{p V}=\mathbf{n R T}, \mathbf{R}=8.31 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$

1. What is the volume of one mol of an ideal gas at standard temperature and pressure (STP)? $\left(\mathrm{P}=1.000 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}, \mathrm{~T}=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}\right) \quad$ What is the volume in liters? $\left(1 \mathrm{~m}^{3}=1000\right.$ liters) (22.4 liters)
2. George Uss has 0.34 mols of Xenon tetrafluoride in a container with a volume of 0.159 m^{3} at $78.0^{\circ} \mathrm{C}$. What is the pressure? $(6.2 \mathrm{E} 3 \mathrm{~Pa})$
3. Hugh Jass has a volume of 143 liters and 2.56 mols of Xenon gas at a pressure of 67,120 Pa . What must be the temperature in Kelvins? What is the temperature in ${ }^{\circ} \mathrm{C}(451 \mathrm{~K}$,

Some molar masses:	
H	1.0079
He	4.003
N	14.0067
Br	79.904
Xe	131.293

4. Anita Breke fills a large helium balloon with 2.18 grams of Helium gas. How many mols of He is this? What is the pressure in the balloon if the gas occupies a volume of 12.05 liters (1000 liters $=1 \mathrm{~m}^{3}$) at a temperature of $18.0{ }^{\circ} \mathrm{C}$? (Beware the ides of Celsius!) What is that pressure in atmospheres? What is the gauge pressure in Pa and Atmospheres? ($0.545 \mathrm{mols}, 1.09 \times 10^{5} \mathrm{~Pa}, 1.08 \mathrm{~atm}, 8 \times 10^{3} \mathrm{~Pa}, .08 \mathrm{~atm}$)
5. A reaction vessel operates at 3.14 atmospheres. What is that pressure in Pa ? If the vessel has a volume of $0.113 \mathrm{~m}^{3}$, is at a temperature of $145^{\circ} \mathrm{C}$, and contains pure Nitrogen gas, how many mols of nitrogen gas does it contain? How many grams of Nitrogen does it contain? (None Of Fred's Clients Bring Iron Hats - Nitrogen is a diatomic gas) $\left(3.18 \times 10^{5} \mathrm{~Pa}\right.$, 10.3 mols, 290. g)
6. A container has a volume of 216 liters. (1000 liters $=1 \mathrm{~m}^{3}$) If it can sustain a pressure of 13.5 atmospheres before bursting, and contains 89.1 grams of Hydrogen gas, a) what is its bursting pressure in Pa ? b) how many mols of Hydrogen does it contain? and c) what is its maximum operating temperature in K and ${ }^{\circ} \mathrm{C}$? $\left(1.37 \times 10^{6} \mathrm{~Pa}, 44.2 \mathrm{mols}, 804\right.$ $\mathrm{K}, 531^{\circ} \mathrm{C}$)
7. A 2.00 liter bottle contains 18.15 grams of Bromine gas and is at a gauge pressure of 0.153 atm . What is its temperature in Celsius? ($-26^{\circ} \mathrm{C}$)
8. George has 205 grams of Hydrogen gas at 1275 Torr Gauge pressure and $127.0^{\circ} \mathrm{C}$. What must be the volume of the container? $\left(1.25 \mathrm{~m}^{3}\right)$
9. Jeanne has 1,529 grams of Xenon gas in 127 liters at a temperature of $-16.0^{\circ} \mathrm{C}$. What must be the gauge pressure in psi? (13.7 psi gauge)
Objective G: Combined Gas Law: $\frac{P V}{n T}=\frac{P V}{n T}$
10. An aerosol can is at an absolute pressure of 603 Boogalas when it is at 312 K . If I put it in liquid nitrogen and lower its temperature to 77.0 K , what is the new pressure in Boogalas? (1000 milli Boogalas $=1$ Boogala) (Assume it does not leak, and the volume remains constant) (149 Boogalas)
11. Air trapped in an airtight cylinder when the piston is 34.1 inches high is at 57.0 Jukkulas. How high must the piston be if the pressure is later at a pressure of 115 Jukkulas? Assume temperature remains constant. (16.9 inches)
12. A Tupperware container is at 1.00 atm at $21.0^{\circ} \mathrm{C}$. (Convert to K) It is heated in a microwave to $99.5^{\circ} \mathrm{C}$ with the lid on. Assuming no gas escapes, what is the pressure inside in atm? (1.27 atm)
13. A quantity of ideal gas is compressed at constant temperature from 34.5 liters to 12.4 liters. What was the initial pressure if the final pressure was $2.45 \times 10^{5} \mathrm{~Pa} ?\left(8.81 \times 10^{4} \mathrm{~Pa}\right)$
14. A balloon has a volume of 1.25 liters at $20.5^{\circ} \mathrm{C}$. At what temperature does it have a volume of 1.02 liters, assuming the pressure and mols remain constant? $\left(-33.5^{\circ} \mathrm{C}\right)$
15. One mol of an ideal gas occupies 22.4 liters at STP. ($\mathrm{P}=1.000 \mathrm{~atm} \mathrm{~T}=0.00^{\circ} \mathrm{C}$) What volume does it occupy at $97.0^{\circ} \mathrm{C}$ and 1.29 atm ? (23.5 liters)
16. My car tire has a gauge pressure of 32.0 PSI when the temperature is $23.0^{\circ} \mathrm{C}$, what is the temperature in Celsius if the gauge pressure is later 48.0 PSI? (Assume that the tire does not leak, and that the volume remains constant) $\left(124^{\circ} \mathrm{C}\right)$
17. A container with a volume of 3.7 bushels is at a gauge pressure of 274 kPa and $57.0^{\circ} \mathrm{C}$. If it does not leak, and later the gauge pressure is 117 kPa at $145^{\circ} \mathrm{C}$, what is the new volume of the container? (8.06 bushels)
18. An airtight container has a sliding wall, so its volume can change. When the volume is 13.7 cc , the gauge pressure is 0.150 ATM and the temperature is $25.0^{\circ} \mathrm{F}$. What must be the new gauge pressure if the container has a volume of 42.1 cc at $450 .{ }^{\circ} \mathrm{F}$? (Absolute zero is $\left.-459.67^{\circ} \mathrm{F}\right)(-0.298 \mathrm{~atm})$
19. A steel nitrogen tank has a mass of 5.36 kg . When it is at $68.0^{\circ} \mathrm{F}$, and 742 psi gauge, it has a mass of 9.83 kg because of the added nitrogen gas. If the gauge pressure is 347 psi , and the mass of the tank is 7.15 kg because some nitrogen was released, what must be the temperature? $\left(170 .{ }^{\circ} \mathrm{F}\right)$

Objective H:

Questions:
20. When does the ideal gas law not work, and why does it not work?
21. Why is there almost no atmospheric helium and hydrogen?

Name Outdoor School name
Show your work, round to the correct significant figures, circle your answers, and label them with units.
When you have finished this, go to the website and check your answers. If you got a problem wrong, cross it off on the front, and do it correctly on the back.

1. Convert 77 K to ${ }^{\circ} \mathrm{C} \quad$ Convert $72{ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C} \quad$ Convert $-40.0^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
2. What is the average kinetic energy of a molecule of an ideal gas at $20.0^{\circ} \mathrm{C}$? What is the total internal energy of 1.00 moles (6.02×10^{23} molecules) of an ideal gas at this temperature?
3. At what temperature in Celsius is the average kinetic energy of an ideal gas molecule $5.00 \times 10^{-21} \mathrm{~J}$?
4. What is the RMS speed of a nitrogen molecule $(\mathrm{m}=2 \mathrm{x} 14=28.0 \mathrm{u})$ at $30.0^{\circ} \mathrm{C}$?
5. At what temperature in Celsius is the RMS speed of oxygen molecules $(\mathrm{m}=2 \times 16=32 \mathrm{u}) 470 . \mathrm{m} / \mathrm{s}$?

Energy Density and Efficiency

1. What is the energy content of 10.0 g of petrol (gasoline)? (450 kJ)
2. How many grams of coal must you burn to get 125 kJ of heat energy? Use an specific energy of $40.0 \mathrm{MJ} \mathrm{kg}^{-1}$. $(3.13 \mathrm{~g})$
3. How many grams of petrol must you burn to raise the

Fuel	Specific energy/ MJ kg $^{-1}$	Energy density/ MJ. ${ }^{-3}$
Wood	16	1×10^{4}
Coal	$20-60$	$(20-60) \times 10^{6}$
Gasoline (petrol]	45	35×10^{6}
Natural gas at atmospheric pressure	55	3.5×10^{4}
Uranium (nuclear fission)	8×10^{7}	1.5×10^{15}
Deuterium/tritium [nuclear fusion)	3×10^{6}	6×10^{15}
Water falling through 100 mina hydroelectric plant	10^{-3}	10^{3}

4. A gas water heater contains 189 liters of water at $15.0^{\circ} \mathrm{C}$. If it is 55.0% efficient, and it burns 0.889 kg of natural gas, what is the final temperature of the water? $\left(49.0^{\circ} \mathrm{C}\right.$, the delta T is $\left.34.0^{\circ} \mathrm{C}\right)$
5. An on demand water heater needs to heat 17.0 liters of water per minute from a temperature of 13.0 ${ }^{\circ} \mathrm{C}$ to $54.3^{\circ} \mathrm{C}$. How many grams of natural gas will it burn in one minute if it is 58.0% efficient? (92.1 g)
6. A gas water heater can raise the temperature of 178 liters of water from $21.0^{\circ} \mathrm{C}$ to $65.0^{\circ} \mathrm{C}$ by burning 1.10 kg of natural gas. What is its efficiency? (54.2\%)
7. A power plant generates 125 MW of power. How much energy does it generate in a day? If it is 37.0% efficient, what is the energy input in a day? How many kilograms of coal would it burn to produce that amount of energy? (Use an specific energy of $40.0 \mathrm{MJ} \mathrm{kg}{ }^{-1}$) How many kilograms of Uranium would it go through in a day? $\left(1.08 \times 10^{13} \mathrm{~J}, 2.92 \times 10^{13} \mathrm{~J}, 7.30 \times 10^{5} \mathrm{~kg}\right.$ or 730 metric tons, 0.365 kg of Uranium)
8. A power plant is 37.0% efficient and burns 4190 kg of natural gas a day. What is its average power output? (987 kW)
9. A natural gas generation plant generates a power output of 0.850 MW . It consumes 159 kg of natural gas per hour. What is its efficiency? (35.0%)
10. How many kg of natural gas will a 145 MW natural gas electrical generation plant that is 34.0% efficient burn in a year? $\left(2.45 \times 10^{8} \mathrm{~kg}\right)$

Wind Turbines

11. A giant wind turbine has a radius of 43.9 meters, and operates where the average wind speed is 6.64 m / s, and the air density is $1.31 \mathrm{~kg} \mathrm{~m}^{-3}$. What is the maximum amount of power available to it? What power does it capture if the air exiting the turbine is still going $5.14 \mathrm{~m} / \mathrm{s}$? If the electrical generator is 89.0% efficient, what electrical power does it create? ($1.16 \mathrm{MW}, 622 \mathrm{~kW}, 554 \mathrm{~kW}$)
12. A wind turbine slows air with a density of $1.25 \mathrm{~kg} \mathrm{~m}^{-3}$ from $7.12 \mathrm{~m} / \mathrm{s}$ to $6.50 \mathrm{~m} / \mathrm{s}$ and needs to capture 26.5 kW of power. What radius does it need to be? How many of these would you need to capture 1.20 MW of power? (12.5 m , about 45 , I suppose 46 to be more than that)
13. A wind turbine with 15.0 m blades captures 45.8 kW of power from air with a density of $1.35 \mathrm{~kg} \mathrm{~m}^{-3}$ initially moving at $6.15 \mathrm{~m} / \mathrm{s}$. What is the speed of the air leaving the turbine? $(5.15 \mathrm{~m} / \mathrm{s})$
14. A wind farm operates in air with a density of $1.30 \mathrm{~kg} \mathrm{~m}^{-3}$. The individual turbine blades are 45.1 m long, and the average wind speed is $5.40 \mathrm{~m} / \mathrm{s}$. If the turbines have an overall efficiency of 41.5%, what is its average power output of a single turbine? How many of these turbines would you need if you wanted to generate 120 . MW? (271 kW , about 442)
15. A wind turbine with 35.0 m long blades slows air with a density of $1.30 \mathrm{~kg} \mathrm{~m}^{-3}$ from $8.15 \mathrm{~m} / \mathrm{s}$ to 7.25 m / s. What power does it capture from the wind? If the electrical generator is 92.0% efficient, what is the power output? $(401 \mathrm{~kW}, 369 \mathrm{~kW})$

Pumped Storage

16. A pumped storage system allows water to fall through a vertical distance of 270 m at a rate of 450 . $\mathrm{kg} \mathrm{s}^{-1}$. What is the total power being transformed? If the generation system has an overall efficiency of 56.0% what is the electrical power output? (1.19 MW, 667 kW)
17. You are designing a pumped storage system. You can raise the reservoir a height of 85.0 m above the generation site, and the overall efficiency is 62.0%. What flow rate in $\mathrm{kg} \mathrm{s}^{-1}$ do you need to have to generate 125 kW ? ($242 \mathrm{~kg} \mathrm{~s}^{-1}$)
18. A pumped storage facility is generating $860 . \mathrm{kW}$ of electrical power with a flow rate of $712 \mathrm{~kg} \mathrm{~s}^{-1}$, and an overall efficiency of 67.0%. What height is the reservoir above the generation site? (184 m)
19. A pumped storage system is generating 413 kW of electricity with a reservoir that is 312 m above the generation site, and is operating a flow rate of $237 \mathrm{~kg} \mathrm{~s}^{-1}$. What is its overall efficiency? (56.9\%)
20. A 72.0% efficient pumped storage plant operates with a vertical displacement of 185 m , and lets 2740 kg of water per minute into the generator. What is its power output? (59.7 kW)

Solar

21. A house has solar panels that measure 1.65 m by 0.991 m , and are 22.3% efficient. If the sunlight has an intensity of $850 . \mathrm{W} \mathrm{m}^{-2}$, what is the electrical power generated by a single panel? How many panels would you need to generate at least 4 kW ? (310. W, 13)
22. A house has 12 solar panels with an efficiency of 21.5% that measure 1.57 m by 1.05 m , and are generating 4020 W of power. What is the intensity of the solar radiation? ($945 \mathrm{~W} \mathrm{~m}^{-2}$)
23. You need to generate 5.60 kW of power for a house with solar panels that have an efficiency of 23.0% and the average intensity of sunlight is $450 . \mathrm{W} \mathrm{m}^{-2}$. What area do you need? $\left(54.1 \mathrm{~m}^{2}\right)$
24. Some solar panels measure 1.60 m by 1.02 m , each one generating 275 W of power when the sunlight intensity is $750 . \mathrm{W} \mathrm{m}^{-2}$. What is the efficiency of the panels? (22.5%)
25. A house has $35.0 \mathrm{~m}^{2}$ total area of solar panels with an efficiency of 24.0%. What is the power output when the sunlight intensity is $1020 \mathrm{~W} \mathrm{~m}^{-2} ?(8570 \mathrm{~W})$

Name \qquad
Favorite Analogy
Show your work, and circle your answers and use sig figs to receive full credit.
When you have finished this, go to the website and check your answers. If you got a problem wrong, cross it off on the front, and do it correctly on the back. 1. A 57.0% efficient gas water heater contains 175 liters of water at $18.0^{\circ} \mathrm{C}$. What is the temperature of the water $\left(\mathrm{c}=4186 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\mathrm{o}} \mathrm{C}^{-1}\right)$ after it has burned 0.784 kg of natural gas? (The specific energy of natural gas is $55 \mathrm{MJ} \mathrm{kg}^{-1}$)
2. A 42.0% efficient power plant burns coal and generates an average power output of 2.60 MW . How many kilograms of coal will it burn in a year? (The specific energy of the coal used is $47.0 \mathrm{MJ} \mathrm{kg}^{-1}$)
3. Air with a density of $1.28 \mathrm{~kg} \mathrm{~m}^{-3}$ enters a 24.0 m radius wind turbine at $7.30 \mathrm{~m} / \mathrm{s}$ and exits at $6.10 \mathrm{~m} / \mathrm{s}$. It generates $160 . \mathrm{kW}$ of electrical power. What is the efficiency of the generator in turning the captured wind energy into electrical energy?
4. You are designing a pumped storage electrical generation site. It needs to generate 950 kW of electrical power with a flow rate of $860 . \mathrm{kg} \mathrm{s}^{-1}$. What height above the generation site does the reservoir need to be if such systems are typically 65.0% efficient?
5. A solar panel measures 2.74 m by 1.35 m , and generates 547 W of power when the sunlight intensity is $800 . \mathrm{W} \mathrm{m}^{-2}$. What is the efficiency of the panels?

Name \qquad
Favorite Metaphor
Show your work, and circle your answers and use sig figs to receive full credit.
When you have finished this, go to the website and check your answers. If you got a problem wrong, cross it off on the front, and do it correctly on the back. 1-2: A solar water heater has an albedo of 0.112 . It measures 1.30 m by 2.15 m , and on a particular day, the intensity of the sun is $1150 \mathrm{~W} \mathrm{~m}^{-2}$.

1. What is the intensity of the reflected light, and the absorbed light?
2. What is the maximum energy it could absorb in an hour?
3. A particular star has a peak black body wavelength of 517 nm . What is its temperature in Kelvins?
4. A power adapter has an outside area of $0.00540 \mathrm{~m}^{2}$, an emissivity of 0.720 , and is dissipating 45.0 mW of heat by black body radiation to a room that is at a temperature of $20.0^{\circ} \mathrm{C}$. What is the temperature of the power adapter?
5. A planet has an upper atmosphere with an albedo of 0.170 . Radiation from the star it orbits strikes the side facing the star with an intensity of $1370 \mathrm{~W} \mathrm{~m}^{-2}$. If there is no greenhouse effect, what would be the equilibrium temperature of the planet with space?

Worksheet IB8.2: Black Body Radiation, Wien, and The Greenhouse Effect

Objective 14F: Basic Heat Transfer

Questions:

1. List ways you can help/prevent heat transfer via conduction, convection, evaporation, and radiation.
2. Why is it that the earth can exchange heat with the rest of the universe only by radiation?

Objective 14I: Wien Displacement law

Questions:

3. In the night sky, there are reddish stars, and bluish stars. Which are the hotter stars? (Look up the visible light spectrum. Note that the red is the long wavelength end of the spectrum, and blue is the short)

Problems:

4. The sun's surface temperature is $5,778 \mathrm{~K}$. What is the peak black body radiation emitted by the sun? What part of the EM spectrum does this wavelength come from? (Use your Google machine) (502 nm - visible)
5. The average temperature of the Earth is $14{ }^{\circ} \mathrm{C}$. What is that in Kelvins, and what is the peak black body radiation for that temperature? What part of the EM spectrum does that radiation come from? ($287 \mathrm{~K}, 10.1 \mu \mathrm{~m}-\mathrm{IR}$)
6. A distant star had a BBR peak of 410 nm . What is the temperature of the surface of the star in K ? $(7,070 \mathrm{~K})$
7. Another star has a BBR peak of 780 nm . What is the temperature of the surface of the star in K ? (3720 K)

Objective 14J: Radiative Heat Transfer

Questions:

8. How is it possible for the ground to get colder than the air on a cold clear night?
9. Why does making something silvery or polished reduce the heat transfer by radiation?

Problems:

10. The Sun has a surface temperature of $5,778 \mathrm{~K}$, a radius of $6.96 \times 10^{8} \mathrm{~m}$. Assuming it is a perfect black body, calculate the total power output of the sun. $\left(3.85 \times 10^{26} \mathrm{~W}\right)$
11. The earth has an average surface temperature of 287 K and a radius of $6.38 \times 10^{6} \mathrm{~m}$. At what rate does it radiate energy to space? $\left(1.97 \times 10^{17} \mathrm{~W}\right)$
12. A 100. Watt incandescent light bulb has a filament temperature of 2810 K . What is the area of the filament in m^{2} if the emissivity is 0.55 ? (What is the peak BBR for this filament? Visible light is 400 to $700 \mathrm{~nm} . .).\left(5.1 \times 10^{-5} \mathrm{~m}^{2}, 1.0 \times 10^{-6} \mathrm{~m}\right.$ or 1.0 $\mu \mathrm{m}$)
13. A person with a skin surface area of $1.6 \mathrm{~m}^{2}$ and temperature of $32{ }^{\circ} \mathrm{C}$ is in a room where the dark absorptive walls are at a temperature of $18{ }^{\circ} \mathrm{C}$. What is the net rate of heat transfer if the emissivity of their skin and clothing is about 0.68 ? $\quad(\mathrm{P}=$ $\left.\mathrm{e} \sigma \mathrm{A}\left(\mathrm{T}^{4}-\mathrm{T}^{4}\right)\right)(92 \mathrm{~W})$
14. A radiator in a room is radiating energy at a rate of 345 Watts through a radiant area of 1.80 square meters. It has an emissivity of 0.890 , and the room it is in has an ambient temperature of $18.0^{\circ} \mathrm{C}$. What is the temperature of the radiator in degrees Celsius? ($50.6^{\circ} \mathrm{C}$)

Objective 14K: Albedo

Problems:

15. An aluminum roof has an albedo of 0.890 . If $1200 \mathrm{Wm}^{-2}$ of solar radiation is incident on the roof, what is the reflected intensity, and what is the absorbed intensity? ($1070 \mathrm{Wm}^{-2}$ reflected, $132 \mathrm{Wm}^{-2}$ absorbed)
16. A black asphalt roof has an albedo of 0.0900 . If $1200 \mathrm{Wm}^{-2}$ of solar radiation is incident on the roof, what is the reflected intensity, and what is the absorbed intensity? ($108 \mathrm{Wm}^{-2}$ reflected, $1092 \mathrm{Wm}^{-2}$ absorbed)
17. What should the albedo be of a solar heater if it is to absorb 95.0% of the incoming light? (0.050)
18. A piece of metal lying in the sun measures 0.680 m by 0.543 m and has an albedo of 0.68 . If it is absorbing $416 \mathrm{Wm}^{-2}$, what must be the intensity of the light hitting it? $\left(1300 \mathrm{Wm}^{-2}\right)$ What amount of energy will it absorb in a minute? (9.22 kJ)
19. A solar water heater has an albedo of 0.0452 . What area must it have if it is to absorb 11.6 MJ in one hour when the intensity of the solar radiation is $1150 \mathrm{~W} \mathrm{~m}^{-2} ?\left(2.93 \mathrm{~m}^{2}\right)$

Objective 14L: The Greenhouse Effect

Problems:

20. A star has a radius of $3.50 \times 10^{8} \mathrm{~m}$ and a temperature of 4280 K . What is the power output of the star? (Its luminosity) What is the intensity of light from it in Wm^{-2} if you are $1.30 \times 10^{11} \mathrm{~m}$ from it? $\left(2.93 \times 10^{25} \mathrm{~W}, 138 \mathrm{Wm}^{-2}\right)$
21. The intensity of a star is $1650 \mathrm{Wm}^{-2}$ from a distance of $1.40 \times 10^{11} \mathrm{~m}$. What is the power output of the star? What is the temperature of the star's surface if it has a radius of $9.30 \times 10^{8} \mathrm{~m}$? $\left(4.06 \times 10^{26} \mathrm{~W}, 5070 \mathrm{~K}\right)$
22. $1450 \mathrm{Wm}^{-2}$ of energy is incident on a planet whose upper atmosphere has an albedo of 0.230 . What intensity of light gets through the upper atmosphere, and what is the average intensity over the whole surface of the planet? (1116.5 Wm ${ }^{-2}, 279 \mathrm{~W} / \mathrm{m}^{-2}$)
23. A planet has an average absorbed incoming energy intensity over its entire surface of $295 \mathrm{Wm}^{-2}$, and its upper atmosphere has an albedo of 0.330 . What is the energy intensity incident from space on the upper atmosphere? ($1761 \mathrm{Wm}^{-2}$)
24. What would be the equilibrium temperature of the earth if is absorbing on the average $258 \mathrm{Wm}^{-2}$ from the sun (it isn't), and we ignored the greenhouse effect? (we can't) (260. K)
25. A planet with no atmosphere has an average surface temperature of 316 K . What is the average absorbed energy intensity over the surface of the planet from the star it orbits? What is the maximum intensity incident on planet? ($565 \mathrm{Wm}^{-2}, 2261 \mathrm{Wm}^{-2}$)
26. A planet has an upper atmosphere albedo of 0.105 and is at an equilibrium temperature of $13.0{ }^{\circ} \mathrm{C}$ with space. What is the incoming solar intensity from the star it orbits? (Assume there is no greenhouse effect due to the atmosphere) $\left(1699 \mathrm{Wm}^{-2}\right)$
