\qquad

Count Rumford:

Caloric Model

Rumford's discovery:

Joule:

Joule's heat-energy equivalence:

	$\left(\right.$ in $\left.\mathrm{J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)$	(in $\left.\mathrm{J}^{\circ} \mathrm{C}^{-1} \mathrm{~mol}^{-1}\right)$
Aluminum	900	24.4
Carbon	507	6.11
Copper	386	24.5
Lead	128	26.5
Silver	236	25.5
Tungsten	134	24.8

Example: A. Nicholas Cheep wants to calculate what heat is needed to raise 1.5 liters (1 liter $=1 \mathrm{~kg}$) of water by $5.0^{\circ} \mathrm{C}$. Can you help him? $\left(\mathrm{c}=4186 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right) \quad(31,000 \mathrm{~J})$

Whiteboards: (These are solved on the website in the videos linked after the main one)

1. Adella Kutessen notices what change in temperature if 512 g of iron absorbs 817 J of heat $\left(\mathrm{c}=450 . \mathrm{J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)\left(3.55{ }^{\circ} \mathrm{C}\right)$	2. Anita Break notices that a chunk of Aluminium absorbs $12,000 \mathrm{~J}$ of heat while raising its temperature a mere $3.455^{\circ} \mathrm{C}$ Of what mass is this chunk? $\left(\mathrm{c}=900 . \mathrm{J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)(3.9 \mathrm{~kg})$
3. Anne Sodafone does an experiment where 5.412 kg of a mystery substance absorbs $12,510 \mathrm{~J}$ of heat while raising its temperature $2.19{ }^{\circ} \mathrm{C}$ What is the specific heat? (1060 $\left.\mathrm{J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg} \mathrm{~kg}^{-1}\right)$	Draw a picture of a turtle here please:

```
Videos 14C - Latent Heat
\(\mathrm{Q}=\mathrm{mL}\)
    Q - Heat (in J)
    m - Mass (in kg )
    L - Latent heat (in \(\mathrm{J} \mathrm{kg}^{-1}\) ) of
        fusion \(=\) melting
        vaporization \(=\) boiling
```

Some latent heats
(in $\mathrm{J} \mathrm{kg}^{-1}$ Fusion Vaporisation

$\mathrm{H}_{2} \mathrm{O}$	3.33×10^{5}	22.6×10^{5}
Lead^{2}	0.25×10^{5}	8.7×10^{5}
NH_{3}	0.33×10^{5}	1.37×10^{5}

 \(0.33 \times 10^{5}\)
 Example: Dewey Cheatham melts 4.51 kg of lead. What heat is needed? $\left(1.1 \times 10^{5} \mathrm{~J}\right)$

Whiteboards: (These are solved on the website in the videos linked after the main one)
Take the time to go through \#3 - those are the questions that are on the test!!!

1. Helen Highwater pumps $45 \mathrm{MJ}\left(45 \times 10^{6} \mathrm{~J}\right)$ of heat into some water at $100^{\circ} \mathrm{C}$. How much boils away? (20. kg)
2. Aaron Alysis has a 1500. Watt heater. What time will it take him to melt 12.0 kg of ice, assuming all of the heat goes into the water at $0^{\circ} \mathrm{C}$
(2660 seconds)
3. Eileen Dover takes 1.42 kg of ice $\left(\mathrm{c}=2100 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)$ from $-40.0^{\circ} \mathrm{C}$ to water $\left(\mathrm{c}=4186 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)$ at $20.0{ }^{\circ} \mathrm{C}$. What TOTAL heat is needed? $\left(7.11 \times 10^{5} \mathrm{~J}\right)$

Videos 14D - Phase Change Graphs

\qquad

4 Phases of Matter

Solid
Crystalline/non crystalline

Liquid

Greased marbles
Gas
Ping pong balls
Plasma
Electrons no longer bound to particular nucleus

(a)

(b)

(c)

Example

Csolid $\quad 128.21 \mathrm{~J} / \mathrm{kg}$ C Lf $11538.46154 \mathrm{~J} / \mathrm{kg}$
Cliquid $230.7692308 \mathrm{~J} / \mathrm{kg}$ C Lv $19230.76923 \mathrm{~J} / \mathrm{kg}$ Cgas $192.3076923 \mathrm{~J} / \mathrm{kg} \mathrm{C}$

T vs \mathbf{Q} for . 45 kg of stuff

Whiteboards: (These are solved on the website in the videos linked after the main one)

1. What is the melting point and boiling point? $\left(25^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}\right)$	2. What is specific heat of the solid phase? $\left(440 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)$
3. What is specific heat of the liquid phase? $\left(890 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)$	4. What is specific heat of the gaseous phase? $\left(1480 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)^{-}$
5. What is the latent heat of fusion? $(22,000 ~ \mathrm{~J} \mathrm{~kg}$	
	kg What is the latent heat of vaporisation?

Heat lost by hot stuff = heat gained by cold stuff

Example 1: A 0.231 kg piece of unknown substance at $98^{\circ} \mathrm{C}$ is dropped into 0.481 kg of water at $18{ }^{\circ} \mathrm{C}$. The final temperature of the water is $32{ }^{\circ} \mathrm{C}$. What is the specific heat of the substance? (neglect the calorimeter cup, and assume no heat is lost to the surroundings) $\left(\mathrm{c}_{\text {water }}=4186 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)\left(1800 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)$

Example 2: A 0.250 kg piece of iron at $95.0^{\circ} \mathrm{C}$ is dropped into 0.512 kg of water at $18.0^{\circ} \mathrm{C}$. What is the final equilibrium temperature? (neglect the calorimeter cup, and assume no heat is lost to the surroundings) $\left(\mathrm{c}_{\text {water }}=4186 \mathrm{~J}^{\mathrm{O}} \mathrm{C}^{-1} \mathrm{~kg}^{-1}, \mathrm{c}_{\mathrm{Fe}}=450 . \mathrm{J}^{\circ} \mathrm{C}^{-1} \mathrm{~kg}^{-1}\right)\left(21.8{ }^{\circ} \mathrm{C}\right)$

Whiteboards: (These are solved on the website in the videos linked after the main one)

Videos 13AB - Kinetic Theory and Temperature name
13A - Kinetic Theory:

Hot $=$ more E_{k}

Cold $=$ less E_{k}

13B - Temperature Scales
Absolute Zero
Thermameters compare Fahrenheit,

Water	Celsius	Fahren.	Kelvins
Boil	$100^{\circ} \mathrm{C}$	$212^{\circ} \mathrm{F}$	373.15 K
Freeze	$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	273.15 K
		$0^{\circ} \mathrm{F}$	

0 K

Write down the formula for converting:

Whiteboards: (These are solved on the website in the videos linked after the main one)

1. What is $37{ }^{\circ} \mathrm{C}$ in Kelvins? (310 K)	2. What is 77.35 K in ${ }^{\circ} \mathrm{C}\left(-195.80{ }^{\circ} \mathrm{C}\right)$
3. What is $128^{\circ} \mathrm{C}$ in Kelvins? (401 K)	

\qquad
$\mathrm{P}=$ pressure in Pa (Absolute, not gauge)
$\mathrm{V}=$ volume in m^{3}
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{n}=$ moles of gas molecules
$\mathrm{n}=$ mass $/$ molar mass
careful of: N O F Cl Br I H
$\mathrm{R}=8.31 \mathrm{JK}^{-1}$ (for these units)
$\mathrm{T}=$ ABSOLUTE TEMPERATURE (in K)

Example - Nitrogen cylinder is at a (gauge) pressure of 90.1 psi. It has a volume of 378 liters at a temperature of $37.0^{\circ} \mathrm{C}$. What is the mass of Nitrogen in the tank? (N is 14.007 amu) ($2967 \mathrm{~g}=2.97 \mathrm{~kg}$)

Whiteboards: (These are solved on the website in the videos linked after the main one)

1. What is the volume in liters of 1.00 mol of N_{2} at 0.00 ${ }^{\circ} \mathrm{C}$, and 1.00 atm ? $\left(1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}\right)$ (22.4 liters)	2. We have 34 g of O_{2} in 18.3 liters @ $23^{\circ} \mathrm{C}$. What pressure? $\left(1.43 \times 10^{5} \mathrm{~Pa}\right)$
3. What is the temperature if 52.0 g of He occupies 212 liters at a pressure of $2.15 \times 10^{5} \mathrm{~Pa}$? $\left(422 \mathrm{~K}, 149^{\circ} \mathrm{C}\right)$	Draw a picture of a pretty pony here please if you haven't anything better to do

\qquad

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

What must be true about Temperature and Pressure (and volume too):

Example - A nitrogen cylinder contains 3.42 kg of nitrogen at 2000 . psi absolute and $20.0^{\circ} \mathrm{C}$. What is the pressure if the temperature is $150 .{ }^{\circ} \mathrm{C}$, but you have released 0.20 kg of nitrogen? (2718 $\mathrm{psi} \approx 2720 \mathrm{psi}$)

Whiteboards: (These are solved on the website in the videos linked after the main one)

1. An airtight drum at 1.00 atm and $10.0^{\circ} \mathrm{C}$ is heated until it reaches a pressure of 1.15 atm . What is the new temperature in ${ }^{\circ} \mathrm{C} ?\left(52.5{ }^{\circ} \mathrm{C}\right)$	2. An airtight cylinder has a pressure of 162 Jukkalas when the piston is 14.5 cm from the bottom. What is the pressure if the piston is moved to 17.2 cm from the bottom of the cylinder? (Assume that the temperature is the same) (137 Jukkalas)
3. A tyre is at 82 kPa gauge pressure when the temperature is $10.0{ }^{\circ} \mathrm{C}$. What is the gauge pressure if the temperature is $52{ }^{\circ} \mathrm{C}$ (assume the volume remains constant, and that the tyre does not leak) (211 kPa Absolute, 109 kPa Gauge)	Draw a very happy timberwolf eating with knife and fork in this space:

\bar{E}_{K} - Average KE of an ideal gas particle (J)
k_{b} - Boltzmann's Constant $\left(1.38 \times 10^{-23} \mathrm{JK}^{-1}\right)$
$\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$
T - absolute temperature in Kelvins
R - the gas constant $\left(8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
$\mathrm{N}_{\mathrm{A}}-$ Avocado's number $\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$

Name

Example \#1 - What is the RMS velocity of a helium atom in the thermosphere that is at $1800{ }^{\circ} \mathrm{C}$?
(The mass of a Helium atom is $(4.003 \mathrm{u}) \times\left(1.661 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)=6.649 \times 10^{-27} \mathrm{~kg}$)

Whiteboards: (These are solved on the website in the videos linked after the main one)

1. What is the average KE of an ideal gas molecule at $37.0^{\circ} \mathrm{C} ?{ }_{\left(6.42 \times 10^{21} \mathrm{~J}\right)}$	2. At what temperature is the average KE of an ideal gas molecule $1.20 \times 10^{-20} \mathrm{~J} ?(580 \mathrm{~K})$
3. What is the RMS speed of an atom of Neon-20 at room temperature? (Ne-20 $\left.=19.992 \mathrm{u}, 1 \mathrm{u}=1.661 \mathrm{x} 10^{-27} \mathrm{~kg}, \mathrm{~T}=20.0^{\circ} \mathrm{C}\right)$ $(605 \mathrm{~m} / \mathrm{s})$	4. At what temperature is the RMS velocity of Helium the same as Usain Bolt's PR average in the $100 \mathrm{~m} ?$ $(100 \mathrm{~m}$ in 9.58 s$)$ $\left(\begin{array}{ll}\left.\text { (He }=4.00 \mathrm{u}, 1 \mathrm{u}=1.661 \mathrm{x} 10^{-27} \mathrm{~kg}\right) \\ (0.0175 \mathrm{~K})\end{array}\right.$

What V_{p} and $\mathrm{V}_{\text {rms }}$ mean:

What are the limitations of the ideal gas law? (i.e. when does it break down?)
In general:

Examples:

Videos 15F - Energy Sources
U.S. Energy Flow Trends - 2002

Net Primary Resource Consumption ~97 Quads

	Energy Transformations	Pros	Cons
Oil			
Natural Gas			
Coal			
Hydroelectric			
Pumped			
Hydro			
Nuclear			
Wind			
Solar PV			
Solar Heating			

Videos 15F1 - Energy Production Energy Density:

Fuel	Specific energy/ $\mathrm{MJ} \mathrm{kg}^{-1}$	Energy density/ $\mathrm{MJ} \mathrm{m}^{-3}$
Wood	16	1×10^{4}
Coal	$20-60$	$[20-60] \times 10^{6}$
Gasoline (petrol)	45	35×10^{6}
Natural gas at atmospheric pressure	55	3.5×10^{4}
Uranium (nuclear fission)	8×10^{7}	1.5×10^{15}
Deuterium/tritium (nuclear fusion)	3×10^{8}	6×10^{15}
Water falling through 100 m in a hydroelectric plant	10^{-3}	10^{3}

Name
0. Energy Density: How many grams of petrol must you burn to release 100 kJ of energy? (2.22 grams)

$$
\text { efficiency }=\frac{\text { useful work out }}{\text { total work in }}
$$

$$
Q=m c \Delta T
$$

$$
=\frac{\text { useful power out }}{\text { total power in }}
$$

1. Heating Water: A water heater uses natural gas to heat 195 liters of water from $15.0^{\circ} \mathrm{C}$ to $59.0^{\circ} \mathrm{C}$. What mass of natural gas would this take for a 100% efficient heater? What if the efficiency is 56.0% $\left(\mathrm{c}_{\text {water }}=4186 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)(0.653 \mathrm{~kg}, 1.17 \mathrm{~kg})$

2. Thermal Power Stations:

A coal fired electrical generation plant has an overall efficiency of 34.0% and generates an average of 180 . MW of electrical power. What quantity of a coal with a specific energy of 47.0 MJ kg -1 would this plant use in one week? $\left(6.81 \times 10^{6} \mathrm{~kg}\right)$

Whiteboard 1: A water heater uses natural gas to heat 180 . liters of water initially at $20.0^{\circ} \mathrm{C}$. If the heater has an efficiency of 54.0%, what is the final temperature of the water after it has burned 0.500 kg of natural gas?
$\left(\mathrm{c}_{\text {water }}=4186 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)\left(39.7^{\circ} \mathrm{C}\right)$

Whiteboard 2: A natural gas electrical generation plant puts out an average of 312 MW of power for a year, and in the process, uses $4.36 \times 10^{8} \mathrm{~kg}$ of natural gas. What is its overall efficiency? (41.0\%)

3. Wind Turbines:

The formulas:

$$
\begin{array}{ll}
\text { Power }=\frac{1}{2} A \rho v^{3} \quad \begin{array}{l}
\text { For wind power } \\
\mathrm{A}=\text { frontal area }\left(\pi \mathrm{r}^{2}\right) \mathrm{m}^{2} \\
\rho=\text { density of air }\left(\approx 1.3 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
\\
\\
\mathrm{v}=\text { wind speed }
\end{array}
\end{array}
$$

Ex1 - What max power can you get from a wind turbine with 8.2 m long blades when the wind speed is about $5.4 \mathrm{~m} / \mathrm{s}$ on the average? Use the density of air to be $1.2 \mathrm{~kg} / \mathrm{m}^{3} \quad\left(2.0 \times 10^{4} \mathrm{~W}\right)$

Ex2 - What max power can you get from a wind turbine with 8.5 m long blades when the wind speed is about $7.3 \mathrm{~m} / \mathrm{s}$ incident on the front of the blades, and is slowed to $6.5 \mathrm{~m} / \mathrm{s}$ after the blades. Use the density of air to be $1.3 \mathrm{~kg} / \mathrm{m}^{3} \quad\left(1.7 \times 10^{4} \mathrm{~W}\right)$

Whiteboard: Your wind turbines have a radius of 9.70 m . They operate where the wind speed is $8.50 \mathrm{~m} / \mathrm{s}$, and they slow the wind to $7.60 \mathrm{~m} / \mathrm{s}$ on their downwind side. Use the density of air to be $1.3 \mathrm{kgm}^{-3}$

- What is the power output per turbine?
- How many turbines do you need to generate a megawatt of power? $\left(1.00 \times 10^{6} \mathrm{~W}\right)$ (33652.26963 W $\approx 3.37 \times 10^{4} \mathrm{~W}, 30$ turbines)

4. Pumped Energy Storage:

$$
\text { power }=\frac{\text { energy }}{\text { time }} \quad \Delta E_{p}=m g \Delta h
$$

Example: A 65.0% efficient pumped storage plant uses a reservoir that is 196 m higher than the generation site. What is its electrical power output if it is draining water from the reservoir a a rate of $1250 \mathrm{~kg} \mathrm{~s}^{-1}$? (1.56 MW)

Whiteboard: A pumped electrical storage facility generates 1.66 MW of power. It has a reservoir height of 130 . m, and releases 2240 kg of water per second. What is its overall efficiency? (58.1\%)

5. Solar:

1 kilowatt-hour $(\mathrm{kWh})=3.60 \times 10^{6} \mathrm{~J}$

Example: A photovoltaic panel measures 1.75 m by 1.10 m , and is 23.0% efficient. How much total electrical power can it put out if the solar intensity is $890 \mathrm{~W} \mathrm{~m}^{-2}$? How many Joules of electrical energy can it produce in a 6.00 hour period when the sun is hitting the panels? How many kWh of electricity? ($394 \mathrm{~W}, 8.51 \times 10^{6} \mathrm{~J}, 2.36 \mathrm{kWh}$)

Whiteboard: A house has a total of $12.8 \mathrm{~m}^{2}$ of solar panels that generate a power of 2045 Watts when the solar intensity is $750 . \mathrm{W} \mathrm{m}^{-2}$. What is the efficiency of the panels? (21.3%)
\qquad

Conduction -

Convection -

Radiation -

\qquad

Black Body Radiation - electromagnetic waves emitted by all objects (Radio, Micro, IR Light, UV, X-Ray, Gamma Ray)

Ex: A star has a peak black body wavelength of 501 nm . What is its temperature? (5790 K)

What is the peak radiation of the surface of ocean water that is at $21.0^{\circ} \mathrm{C} ?(9.86 \mu \mathrm{~m})$

Class			Frequency	Wave- length	Energy
Ionizing radiation	Y	Gamma rays	300 EHz	1 pm	1.24 MeV
	HX	Hard X-rays	30 EHz	10 pm	124 keV
			3 EHz	100 pm	12.4 keV
	SX	Soft X-rays	300 PHz	1 nm	1.24 keV
	EUV	Extreme ultraviolet	30 PHz	10 nm	124 eV
	NUV	Near ultraviolet	3 PHz	100 nm	12.4 eV
Visible			300 THz	$1 \mu \mathrm{~m}$	1.24 eV
	NIR	Near infrared		$10 \mu \mathrm{~m}$	124 meV
	MIR	Mid infrared	30 THz		
			3 THz	$100 \mu \mathrm{~m}$	12.4 meV
	FIR	Far infrared			
	EHF	Extremely high frequency	300 GHz	1 mm	1.24 meV
			30 GHz	1 cm	$124 \mu \mathrm{~V}$
	SHF	Super high frequency			
			3 GHz	1 dm	$12.4 \mu \mathrm{eV}$
	UHF	Ultra high frequency			
			300 MHz	1 m	$1.24 \mu \mathrm{eV}$
	VHF	Very high frequency			
a Airrn					

Videos 14J - Radiative Heat Transfer

$P=e \sigma A T^{4}$
Name

P - Rate of heat transfer in Watts
e-emissivity of object
σ - Stefan-Boltzmann constant $-5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
A - Radiative area in m^{2}
T - Temperature in K

Emissivity Table Material	Emissivity Value
Aluminium: anodised	0.77
Aluminium: polished	0.05
Asbestos: board	0.96
Asbestos: fabric	0.78
Asbestos: paper	0.93
Asbestos: slate	0.96
Brass: highly polished	0.03
Brass: oxidized	0.61
Brick common	$.81-.86$
Brick common, red	0.93
Brick facing, red	0.92

Ex1: A brick wall that has been warmed by the sun is at a temperature of 313 K , and measures 13 m long by 3.0 m high. At what rate does it radiate heat to the surroundings?

Ex2: An anodized aluminum sphere $20 . \mathrm{cm}$ in radius is used to radiate waste heat into space. What temperature does it need to be to radiate 800 . W of heat?

Ex3: A transformer box has a surface area of $3.2 \mathrm{~m}^{2}$ and is at a temperature of $39^{\circ} \mathrm{C}$ in a room where the surroundings are at a temperature of $20 .{ }^{\circ} \mathrm{C}$. What is the net rate of heat transfer from the box if its emissivity is 0.82 ?

$$
\begin{aligned}
& I=\frac{\text { power }}{A} \\
& \text { albedo }=\frac{\text { total scattered power }}{\text { total incident power }}
\end{aligned}
$$

Surfaces	Albedo \%
Oceans	10
Dark soils	10
Pine forests	15
Urban areas	15
Light coloured deserts	40
Deciduous forests	25
Fresh snow	85
Ice	90
Whole planet	31

Figure 854 Albedo percentages

Ex - Sunlight of intensity $1030 \mathrm{Wm}^{-2}$ shines on a solar heater with an albedo of $6.20 \%(0.0620)$
What is the reflected intensity? What is the absorbed intensity?
What is the power absorbed if the heater has a surface area of $16 \mathrm{~m}^{2}$?

Try these:
On a day when the solar radiation is $980 . \mathrm{W} / \mathrm{m}^{2}$, how much power per square meter is reflected off into space from the oceans? How much is absorbed?
$98.0 \mathrm{Wm}^{-2}$ reflected, $882 \mathrm{Wm}^{-2}$ absorbed

Do the same calculation for fresh snow. $833 \mathrm{Wm}^{-2}$ reflected, $147 \mathrm{Wm}^{-2}$ absorbed

Class			Freq. uency	Wavelength	Energy
Ionizing radiation	Y	Gamma rays	300 EHz	1 pm	1.24 MeV
	HX	Hard X-rays	30 EHz	10 pm	124 keV
			3 EHz	100 pm	12.4 keV
	SX	Soft X-rays	300 PHz	1 nm	1.24 keV
	EUV	Extreme ultraviolet	30 PHz	10 nm	124 eV
	NUV	Near ultraviolet	3 PHz	100 nm	12.4 eV
Visible	NIR	Near infrared	300 THz	$1 \mu \mathrm{~m}$	1.24 eV
			30 THz	$10 \mu \mathrm{~m}$	124 meV
	MIR	Mid infared	3 THz		
	FIR	Far inflared			
	EHF	Extremely high frequency	300 GHz	1 mm	1.24 meV
			30 GHz		
	SHF	Super high frequency		1 cm	124 eV
			3 GHz		
	UHF	Ultra high frequency		1 dm	12.4 HeV
			300 MHz		
	VHF	Very high frequency			1.24 ev
Aicrn					

Ex 1: A star with a surface temperature of 5200 K has a radius of $6.5 \times 10^{8} \mathrm{~m}$, and is $1.7 \times 10^{11} \mathrm{~m}$ from a planet. Assume the star is a perfect black body. Calculate the intensity of the radiation in Wm^{-2} incident on the planet's upper atmosphere.

Ex 2: $606 \mathrm{Wm}^{-2}$ is incident on the upper atmosphere of a planet. If the planet's upper atmosphere has an albedo of 0.23 , a) What portion of the light makes it to the surface?
b) What is the average intensity of light over the whole surface of the planet?
c) What would be the equilibrium temperature of the planet in space if there were no greenhouse effect?

