Energy Density and Efficiency

1. What is the energy content of 10.0 g of petrol (gasoline)? (450 kJ)
2. How many grams of coal must you burn to get 125 kJ of heat energy? Use a specific energy of 40.0 MJ kg . $(3.13 \mathrm{~g})$
3. How many grams of petrol must you burn to raise the

Fuel	Specific energy/ MJ kg $^{-1}$	Energy density/ MJ. ${ }^{-3}$
Wood	16	1×10^{4}
Coal	$20-60$	$(20-60) \times 10^{6}$
Gasoline (petrol]	45	35×10^{6}
Natural gas at atmospheric pressure	55	3.5×10^{4}
Uranium (nuclear fission)	8×10^{7}	1.5×10^{15}
Deuterium/tritium [nuclear fusion)	3×10^{6}	6×10^{15}
Water falling through 100 mina hydroelectric plant	10^{-3}	10^{3}

4. A gas water heater contains 189 liters of water at $15.0^{\circ} \mathrm{C}$. If it is 55.0% efficient, and it burns 0.889 kg of natural gas, what is the final temperature of the water? $\left(49.0^{\circ} \mathrm{C}\right.$, the delta T is $\left.34.0^{\circ} \mathrm{C}\right)$
5. An on demand water heater needs to heat 17.0 liters of water per minute from a temperature of 13.0 ${ }^{\circ} \mathrm{C}$ to $54.3^{\circ} \mathrm{C}$. How many grams of natural gas will it burn in one minute if it is 58.0% efficient? (92.1 g)
6. A gas water heater can raise the temperature of 178 liters of water from $21.0{ }^{\circ} \mathrm{C}$ to $65.0^{\circ} \mathrm{C}$ by burning 1.10 kg of natural gas. What is its efficiency? (54.2\%)
7. A power plant generates 125 MW of power. How much energy does it generate in a day? If it is 37.0% efficient, what is the energy input in a day? How many kilograms of coal would it burn to produce that amount of energy? (Use an specific energy of $40.0 \mathrm{MJ} \mathrm{kg}^{-1}$) How many kilograms of Uranium would it go through in a day? $\left(1.08 \times 10^{13} \mathrm{~J}, 2.92 \times 10^{13} \mathrm{~J}, 7.30 \times 10^{5} \mathrm{~kg}\right.$ or 730 metric tons, 0.365 kg of Uranium)
8. A power plant is 37.0% efficient and burns 4190 kg of natural gas a day. What is its average power output? (987 kW)
9. A natural gas generation plant generates a power output of 0.850 MW . It consumes 159 kg of natural gas per hour. What is its efficiency? (35.0%)
10. How many kg of natural gas will a 145 MW natural gas electrical generation plant that is 34.0% efficient burn in a year? $\left(2.45 \times 10^{8} \mathrm{~kg}\right)$

Thermal Conduction (L_{f} for ice is $3.33 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$)
11. A wall is 19.1 cm thick (2 x 8 wall), measures 2.10 m by 8.50 m , and $12,800 \mathrm{~J}$ flow through the wall in 15.0 minutes when there is a temperature difference of $12.5^{\circ} \mathrm{C}$ between the inside and the outside of the wall. What is the thermal conductivity of the wall? $\left(0.0122 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)$
12. You design a cooler. It has a surface area of $3.45 \mathrm{~m}^{2}$, and you want it to keep 2.27 kg (5 lbs) of ice from melting in 6.0 hours when there is a temperature difference of $22.0^{\circ} \mathrm{C}$ between the inside and the outside. How thick in cm must the insulation be if it has a thermal conductivity of $0.0372 \mathrm{~W} \mathrm{~m}^{-1}$ ${ }^{\circ} \mathrm{C}^{-1}$? $(8.07 \mathrm{~cm})$
13. A glass window pane is 4.85 mm thick and has a thermal conductivity of $0.841 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\mathrm{o}} \mathrm{C}^{-1}$. How much heat flows through the $1.42 \mathrm{~m} \times 2.36 \mathrm{~m}$ window in a day if the temperature difference from one side of the pane to the other is $0.650^{\circ} \mathrm{C}$? (32.6 MJ)
14. A cooler has 5.20 cm thick walls and insulation with a thermal conductivity of $0.0540 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}$. What mass of ice will melt (Assume it is at $0^{\circ} \mathrm{C}$) in one hour if the cooler has an outside area of 3.84 m^{2}, and the temperature outside is $18.0^{\circ} \mathrm{C} ?(0.776 \mathrm{~kg})$
15. You want there to be a heat transfer of 185,000 Joules per second into fluid that is moving down a copper ($\mathrm{k}=380 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}$) pipe. What total surface area do you need if the temperature difference is $45.0^{\circ} \mathrm{C}$ from the inside to the outside of the tubing with a wall thickness of $1.65 \mathrm{~mm} ?\left(0.0179 \mathrm{~m}^{2}\right)$ Super smart - what length of $3 / 4$ " diameter pipe would you need? $(29.8 \mathrm{~cm})$

Pumped Storage

16. A pumped storage system allows water to fall through a vertical distance of 270 m at a rate of 450 . $\mathrm{kg} \mathrm{s}^{-1}$. What is the total power being transformed? If the generation system has an overall efficiency of 56.0% what is the electrical power output? ($1.19 \mathrm{MW}, 667 \mathrm{~kW}$)
17. You are designing a pumped storage system. You can raise the reservoir a height of 85.0 m above the generation site, and the overall efficiency is 62.0%. What flow rate in $\mathrm{kg} \mathrm{s}^{-1}$ do you need to have to generate 125 kW ? ($242 \mathrm{~kg} \mathrm{~s}^{-1}$)
18. A pumped storage facility is generating $860 . \mathrm{kW}$ of electrical power with a flow rate of $712 \mathrm{~kg} \mathrm{~s}^{-1}$, and an overall efficiency of 67.0%. What height is the reservoir above the generation site? (184 m)
19. A pumped storage system is generating 413 kW of electricity with a reservoir that is 312 m above the generation site, and is operating a flow rate of $237 \mathrm{~kg} \mathrm{~s}^{-1}$. What is its overall efficiency? (56.9\%)
20. A 72.0% efficient pumped storage plant operates with a vertical displacement of 185 m , and lets 2740 kg of water per minute into the generator. What is its power output? (59.7 kW)

Solar

21. A house has solar panels that measure 1.65 m by 0.991 m , and are 22.3% efficient. If the sunlight has an intensity of $850 . \mathrm{W} \mathrm{m}^{-2}$, what is the electrical power generated by a single panel? How many panels would you need to generate at least 4 kW ? (310. W, 13)
22. A house has 12 solar panels with an efficiency of 21.5% that measure 1.57 m by 1.05 m , and are generating 4020 W of power. What is the intensity of the solar radiation? ($945 \mathrm{~W} \mathrm{~m}^{-2}$)
23. You need to generate 5.60 kW of power for a house with solar panels that have an efficiency of 23.0% and the average intensity of sunlight is $450 . \mathrm{W} \mathrm{m}^{-2}$. What area do you need? $\left(54.1 \mathrm{~m}^{2}\right)$
24. Some solar panels measure 1.60 m by 1.02 m , each one generating 275 W of power when the sunlight intensity is $750 . \mathrm{W} \mathrm{m}^{-2}$. What is the efficiency of the panels? (22.5%)
25. A house has $35.0 \mathrm{~m}^{2}$ total area of solar panels with an efficiency of 24.0%. What is the power output when the sunlight intensity is $1020 \mathrm{~W} \mathrm{~m}^{-2} ?(8570 \mathrm{~W})$
