SHM Problems from 11.1:

Speed, Amplitude, and Position:

1. An SHO has a period of 0.234 s and amplitude of 0.470 m . What is its speed and acceleration when it is at x $=+0.118 \mathrm{~m}$? $(12.2 \mathrm{~m} / \mathrm{s},-85.1 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
2. An SHO has a period of 3.45 s , and amplitude of 0.676 m . What is its distance from equilibrium when it has a speed of $0.645 \mathrm{~m} / \mathrm{s}$? $(0.576 \mathrm{~m})$
3. An SHO has a speed of $0.627 \mathrm{~m} / \mathrm{s}$ when it is 0.870 m from equilibrium. What is its period if its amplitude is 1.08 m ? (6.41 s)
4. An SHO has a speed of $3.34 \mathrm{~m} / \mathrm{s}$ when it is 0.540 m from equilibrium. What is its amplitude if its angular velocity is $7.50 \mathrm{rad} / \mathrm{s}$? $(0.700 \mathrm{~m})$
5. An SHO with an amplitude of 2.12 m has a speed of $5.86 \mathrm{~m} / \mathrm{s}$ when it is at $\mathrm{x}=-1.80 \mathrm{~m}$. What is its acceleration at this point? $(+49.3 \mathrm{~m} / \mathrm{s})$

Simple equations of motion:

6. An SHO has an equation of position (in m) of $\boldsymbol{x}=\mathbf{1 4 . 0} \sin (\mathbf{6} .50 \mathrm{t}$) What is its acceleration at $\mathrm{x}=-8.00 \mathrm{~m}$? (338 $\mathrm{m} / \mathrm{s} / \mathrm{s})$ What is its position, velocity and acceleration at $\mathrm{t}=3.20 \mathrm{~s} ?(+13.0 \mathrm{~m},-3.7 \mathrm{~m} / \mathrm{s},-549 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
7. An SHO has an equation of position (in m) of $\boldsymbol{x}=43.2 \sin (12.0 t)$ What is its amplitude and angular velocity? (two questions) $(43.2 \mathrm{~m}, 12.0 \mathrm{rad} / \mathrm{s})$
8. An SHO has an equation of position (in m) of $\boldsymbol{x}=8.50 \sin (4.00 t)$ What is its amplitude and maximum velocity? ($8.50 \mathrm{~m}, 34.0 \mathrm{~m} / \mathrm{s}$)
9. An SHO has an equation of position (in m) of $\boldsymbol{x}=9.50 \sin (\mathbf{1 . 6 2 t})$ What is its position, velocity and acceleration at $\mathrm{t}=9.25 \mathrm{~s} ?(+6.29 \mathrm{~m},-11.5 \mathrm{~m} / \mathrm{s},-16.5 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
10. An SHO has an equation of velocity (in m / s) of $\boldsymbol{v}=\mathbf{1 . 2 5 \operatorname { c o s } (5 . 6 0 t}$) What is its period? (1.12 s) What is its position, velocity, and acceleration at $\mathrm{t}=4.60 \mathrm{~s}(+0.131 \mathrm{~m},+1.01 \mathrm{~m} / \mathrm{s}, 4.11 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
Advanced Equations of motion:
11. An SHO has an equation of position (in m) of $\boldsymbol{x}=5.10 \sin (6.35 t)$. What is its acceleration when it is at $\mathrm{x}=$ +3.40 m ? $(-137 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
12. An SHO has an equation of position (in m) of $\boldsymbol{x}=3.50 \sin (11.0 t)$ What is its velocity at $\mathrm{t}=2.32$ seconds? ($+35.6 \mathrm{~m} / \mathrm{s})$
13. An SHO that has an equation of position (in m) of $\boldsymbol{x}=\mathbf{6 . 5 0} \boldsymbol{\operatorname { s i n }}(\mathbf{5 . 0 0 t})$. What is its speed when it is 2.13 m from equilibrium? $(30.7 \mathrm{~m} / \mathrm{s})$
14. An SHO with a mass of 3.91 kg and an equation of velocity (in m / s) of $\boldsymbol{v}=\boldsymbol{1 2 . 0} \boldsymbol{\operatorname { c o s } (\mathbf { 1 7 . 0 t }) \text { . What is its kinetic }}$ energy at $\mathrm{t}=16.3 \mathrm{~s}$? ${ }_{(181 \mathrm{~J})}$ What is its amplitude, and what is its acceleration at $\mathrm{x}=+0.600 \mathrm{~m} ?(0.706 \mathrm{~m},-173 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
15. What is the amplitude of an SHO that has an equation of velocity (in m / s) of $\boldsymbol{v}=\mathbf{1 4 . 0} \boldsymbol{\operatorname { c o s }}(\mathbf{5 . 7 0 t})$. (2.46 m) What is the position at $\mathrm{t}=16.9 \mathrm{~s} ?(+2.14 \mathrm{~m})$

Energy

16. An SHO has a mass of 3.14 kg , a period of 4.32 s , and amplitude of 0.521 m . What is its total energy? ${ }_{(0.902 \mathrm{~J})}$
17. An SHO has a mass of 2.61 kg , a period of 0.657 s , and a total energy of 843 J . What is its amplitude? $(2.66 \mathrm{~m})$
18. An SHO has a mass of 6.67 kg , amplitude of 0.870 m , and a total energy of 18.3 J . What is its period? $(2.33 \mathrm{~s})$
19. An SHO has a period of 3.41 s , and a total energy of 32.7 J , and amplitude of 5.43 m . What is its mass? (0.653 kg)
20. What is the period of a SHO that has a total energy of 24.2 J , a mass of 3.23 kg , and amplitude of 0.312 m ? (0.506 s)
21. An SHO has a mass of 1.63 kg , a total energy of 45.7 J , amplitude of 0.148 m . What is its kinetic energy when it is 0.115 m from equilibrium? (18.1 J)
22. An SHO has a mass of 2.93 kg , a frequency of 12.0 Hz , and amplitude of 0.194 m . What is its potential energy when it is 0.120 m from equilibrium? (120. J)
23. An SHO has a mass of 4.20 kg , a total energy of 16.8 J , and amplitude of 0.840 m . What distance is it from equilibrium when it has a potential energy of 11.3 J ? $(0.689 \mathrm{~m})$
24. An SHO has a total energy of 436 J , a mass of 0.895 kg , and amplitude of 2.42 m . What is its speed when it is 1.21 m from equilibrium? $(27.0 \mathrm{~m} / \mathrm{s})$
25. An SHO has a total energy of 10.2 J , amplitude of 0.830 m , and a mass of 1.81 kg . What is its potential energy when its velocity is $2.28 \mathrm{~m} / \mathrm{s} ?(5.50 \mathrm{~J})$
