Volume flow rate. $\left(\mathbf{A v}={ }^{\Delta v} / t\right)$ (memorize volumes of cylinders, spheres, and rectangular solids)

1. Water flows at $0.854 \mathrm{~m} / \mathrm{s}$ down a 1.59 cm diameter hose. What time will it take to fill a circular kiddie pool that is 1.75 m in diameter to a depth of 37.0 cm ? (5250 s)
2. An HVAC duct that is 1.02 m in diameter supplies air to a $10.0 \mathrm{mx} 4.20 \mathrm{~m} \times 21.0 \mathrm{~m}$ room at a rate of 3.50 ACH . What is the air speed in the duct? (3.50 ACH means it replaces the air 3.50 times per hour, so it does it once in $(3600 \mathrm{~s}) / 3.5$ seconds) $(1.05 \mathrm{~m} / \mathrm{s})$
3. A pump delivers 180 . liters per minute. What speed does the water travel through its 4.15 cm diameter outlet pipe? What time would it take for the pump to fill a rectangular tank that is 2.1 m x $3.3 \mathrm{~m} \times 5.4 \mathrm{~m}$? $(2.22 \mathrm{~m} / \mathrm{s}, 12,500 \mathrm{~s})$
4. A classroom is 32.0 feet by 58.5 feet and 8.10 feet high. If air flows $8.65 \mathrm{f} / \mathrm{s}$ down a 1.50 foot x 1.00 foot air duct, what time in minutes does it take to replace the air in the room? (19.5 minutes)
5. A pipe bursts in a classroom that is $12.0 \mathrm{~m} \times 35.0 \mathrm{~m}$ in floor area. If it is a 5.08 cm diameter pipe, and the water is going $20.3 \mathrm{~m} / \mathrm{s}$, what depth will the water be in a hour if it does not leak? (35.3 cm)

Continuity ($\mathbf{A v}=\mathbf{A v}$)
6. A 0.75 inch pipe with water going 4.5 inches per second narrows to 0.50 inches inner diameter. What is the velocity in the narrow part? (10. inches $/ \mathrm{sec}$)
7. Air flows at $0.450 \mathrm{~m} / \mathrm{s}$ down a duct that is $24.0 \mathrm{~cm} \times 62.0 \mathrm{~cm}$. If it widens to $35.0 \times 62.0 \mathrm{~cm}$, what is the air velocity there? $(0.309 \mathrm{~m} / \mathrm{s})$
8. A circular 2.50 cm diameter pipe has a flow velocity of $56.0 \mathrm{~cm} / \mathrm{s}$. What is the diameter of the pipe if the flow velocity slows to $13.0 \mathrm{~cm} / \mathrm{s}$? $(5.19 \mathrm{~cm})$
9. A fire hose sprays water at $34.0 \mathrm{~m} / \mathrm{s}$ out of a nozzle that is 2.50 cm in diameter. What is the diameter of the supply line if the velocity is $3.68 \mathrm{~m} / \mathrm{s}(7.60 \mathrm{~cm})$
10. A river with a strangely rectangular channel is 20.0 m wide. At a spot where it is 6.30 m deep, the water moves at a stately $0.0850 \mathrm{~m} / \mathrm{s}$. Later there is a rapids where the water moves at $3.20 \mathrm{~m} / \mathrm{s}$. How deep is it there on the average? (Assume the channel is more or less rectangular in cross section) (0.167 m)

Bernoulli - 2 or 3 terms: $\left(P+\rho g h+1 / 2 \rho v^{2}=P+\rho g h+1 / 2 \rho v^{2}\right)$
$1.00 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=101.3 \mathrm{kPa}=760$. Torr $=14.7 \mathrm{psi}, \rho_{\text {water }}=1000 \mathrm{kgm}^{-3}, \rho_{\text {air }}=1.29 \mathrm{kgm}^{-3}$
11. Water issues from hole in the side of a water tank at $12.0 \mathrm{~m} / \mathrm{s}$. What is the height of the water in the tank above the hole? $\left(\rho=1000 . \mathrm{kgm}^{-3}\right)$ Assume atmospheric pressure above the water in the tank and at the hole. (7.34 m)
12. Air $\left(\rho=1.29 \mathrm{kgm}^{-3}\right)$ streams at $6.70 \mathrm{~m} / \mathrm{s}$ through a hole in a wall. What is the pressure difference from one side to the other? (29.0 Pa)
13. The air is traveling at $45.0 \mathrm{~m} / \mathrm{s}$ over the top of a wing, and $43.0 \mathrm{~m} / \mathrm{s}$ over the bottom of a wing. What is the pressure difference from one side to the other? (114 Pa)
14. Water is at $1.035 \times 10^{5} \mathrm{~Pa}$ in a level pipe where the velocity is $2.40 \mathrm{~m} / \mathrm{s}$. If the pressure drops to $1.024 \times 10^{5} \mathrm{~Pa}$, what is the velocity? $(2.82 \mathrm{~m} / \mathrm{s})$
15. Water moves at $1.70 \mathrm{~m} / \mathrm{s}$ down a level pipe at a pressure of $1.015 \times 10^{5} \mathrm{~Pa}$. What is the pressure if the water speeds up to $4.92 \mathrm{~m} / \mathrm{s} ?\left(9.08 \times 10^{4} \mathrm{~Pa}\right)$

Bernoulli - complex

16. Water flows at $4.50 \mathrm{~m} / \mathrm{s}$ down a 2.10 cm diameter pipe at a pressure of $9.92 \times 10^{4} \mathrm{~Pa}$ in the crawlspace. When the pipe is 1.20 m higher than this the pressure is $9.52 \times 10^{4} \mathrm{~Pa}$. What is the velocity of the water in the pipe? What is the pipe diameter? $(2.17 \mathrm{~m} / \mathrm{s}, 3.02 \mathrm{~cm})$
17. Water moves at $3.50 \mathrm{~m} / \mathrm{s}$ down a 4.80 cm diameter pipe at an elevation of 3.80 m and a pressure of $1.26 \times 10^{5} \mathrm{~Pa}$. At a different elevation the pipe narrows to 3.60 cm in diameter and is at a pressure of $1.36 \times 10^{5} \mathrm{~Pa}$. What is the elevation here? $(1.43 \mathrm{~m})$
18. A 5.40 cm diameter pipe carries water at $3.70 \mathrm{~m} / \mathrm{s}$ at an elevation of 3.40 m and a pressure of $1.56 \times 10^{5} \mathrm{~Pa}$. At an elevation of 4.60 m the pipe narrows to 4.20 cm in diameter. What is the pressure in this part of the pipe? $\left(1.32 \times 10^{5} \mathrm{~Pa}\right)$
19. A 3.50 cm diameter pipe carries water at $4.10 \mathrm{~m} / \mathrm{s}$ at an elevation of 6.30 m and a pressure of $1.24 \times 10^{5} \mathrm{~Pa}$. The pipe widens out at an elevation of 5.10 m where the pressure is $1.43 \times 10^{5} \mathrm{~Pa}$. What is the velocity here and the diameter of the pipe? $(1.53 \mathrm{~m} / \mathrm{s}$ and 5.72 cm$)$
20. Water moves at $4.90 \mathrm{~m} / \mathrm{s}$ down a 4.70 cm diameter pipe at an elevation of 3.80 m and a pressure of $1.21 \times 10^{5} \mathrm{~Pa}$. At a different elevation the pipe widens to 5.90 cm in diameter and is at a pressure of $1.37 \times 10^{5} \mathrm{~Pa}$. What is the elevation here? $(2.90 \mathrm{~m})$

Stokes law: $\mathrm{F}_{\mathrm{D}}=\mathbf{6} \pi \eta \mathrm{rv}$, at terminal velocity $=\mathbf{m g}=\rho \mathbf{V g}$.

(Ignore the buoyant force of air, but not the buoyant force of water.)
1 micron $=1 \times 10^{-6} \mathrm{~m}=1 \mu \mathrm{~m}$
Water: $\rho=1000$ kgm $^{-3}, ~ \eta=1.002 \times 10^{-3}$ Pa s. Air: $\rho=1.29 \mathrm{kgm}^{-3}, \eta=1.81 \times 10^{-5}$ Pas at $20{ }^{\circ} \mathrm{C}$
21. A droplet of water is $6.12 \mu \mathrm{~m}$ in diameter. What is its mass? What is its weight? What speed must it fall through air so that its Stokes drag is equal to its weight? (This is its terminal velocity) $\left(1.20 \times 10^{-13} \mathrm{~kg}, 1.18 \times 10^{-12} \mathrm{~N}, 0.00113 \mathrm{~m} / \mathrm{s}\right)$
22. A droplet of mist falls through air with a terminal velocity of $0.00156 \mathrm{~m} / \mathrm{s}$. What is its radius? (Ignore the buoyant force of the air) $(3.60 \mu \mathrm{~m})$
23. A tiny grain of basalt $\left(\rho=2920 \mathrm{kgm}^{-3}\right)$ is 2.20 microns in diameter. What speed does it settle in water? (Don't ignore the buoyant force of water) $\left(5.05 \times 10^{-6} \mathrm{~m} / \mathrm{s}\right)$
24. A tiny grain of basalt $\left(\rho=2920 \mathrm{kgm}^{-3}\right)$ takes 27.0 minutes to settle from the top of a 8.50 cm tall test tube full of water to the bottom. What is its speed? What is its radius? What time would it take to settle in a 5.40 cm radius centrifuge spinning at 1200 RPM? $\left(5.25 \times 10^{-5} \mathrm{~m} / \mathrm{s}, 3.54 \times 10^{-6} \mathrm{~m}, 18.6 \mathrm{~s}\right)$
25. A 3.60 micron diameter particle falls through air with a terminal velocity of $0.00130 \mathrm{~m} / \mathrm{s}$. What is its density? $\left(3330 \mathrm{kgm}^{-3}\right)$

Reynolds number Re_r $={ }^{\mathbf{v r} \rho} / \boldsymbol{\eta}$

26. Syrup with a viscosity of 1.20 Pa s and a density of $1080 \mathrm{kgm}^{-3}$ needs to have turbulent flow down a pipe where it is heated. What speed must it go down a pipe that is 68.0 cm in diameter to ensure that it has a Re_r of 1200? ($3.92 \mathrm{~m} / \mathrm{s}$)
27. What is the Re_r of water flowing at $0.130 \mathrm{~m} / \mathrm{s}$ down a tube that is 8.01 mm in diameter? (520.)
28. What is the maximum speed air can flow down a 24.0 cm diameter duct to have a Re_r of 850 ? ($9.94 \mathrm{~cm} / \mathrm{s}$)
29. What is the Re_r of air flowing at $0.935 \mathrm{~m} / \mathrm{s}$ down a duct with a diameter of 1.20 m ? $\left(4.00 \times 10^{4}\right)$
30. What maximum diameter pipe can water flow down at $0.890 \mathrm{~m} / \mathrm{s}$ to have a Re_r of 950 ? (2.14 mm)
