$\rho=\frac{m}{V}$
$\rho=$ Density in $\mathrm{kg} \mathrm{m}^{-3}$
$\mathrm{m}=$ mass in kg
$\mathrm{V}=$ Volume in m^{3}

Example - What is the mass of an iron cannon ball that is 17 cm in diameter?

Whiteboards:

F $=$ Force in N
$\mathrm{A}=$ Area in m^{2}
$\mathrm{P}=$ pressure in $\mathrm{N} / \mathrm{m}^{2}$ (Pascals -Pa)

Example - A 2.4 kg box measures 15 cm by 25 cm on the base. What is the pressure under the box?

Whiteboards:

1. What is the pressure of 42 N on a $20 . \mathrm{cm} \mathrm{x} 32 \mathrm{~cm}$ plate? $(660$ Pa	2. What force does 3.200 kPa exert on a 78.0 cm x 182 cm pane of glass? $(4540 \mathrm{~N})$

Videos 10D - Pressure Conversions

$1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=101.3 \mathrm{kPa}=760 . \operatorname{torr}=14.7 \mathrm{PSI}$
$\left(1 \mathrm{bar}=1 \times 10^{5} \mathrm{~Pa}\right.$, so $\left.1 \mathrm{~atm}=1.013 \mathrm{bar}\right)$
Convert 2.10 atm to $\mathrm{Pa}:\left(2.13 \times 10^{5} \mathrm{~Pa}\right)$

Convert 345 torr to $\mathrm{Pa}:\left(4.60 \times 10^{4} \mathrm{~Pa}\right)$

Convert $2.45 \times 10^{4} \mathrm{~Pa}$ to PSI: $\left.{ }^{(3.56} \mathrm{PSI}\right)$

Whiteboards:

| 1. Convert 32 psi to kPa | 2. Convert 890 Torr (mm Hg) to Pa |
| :--- | :--- | (220 kPa)

3. Convert 2000 psi to atm:
(136 atm $\approx 100 \mathrm{~atm}$)

Videos 10E - Gauge Pressure

Most pressure gauges compare to Atmospheric
Gauge pressure is how much more a pressure is
than atmospheric
(i.e. this room is at 0 Gauge - Absolute P is 1 atm more)
$P=P_{\text {gauge }}+P_{\text {Atm }}$
$\mathrm{P}=$ Absolute (actual) pressure
$\mathrm{P}_{\text {gauye }}=$ Gauge pressure
$\mathrm{P}_{\mathrm{Atm}}=$ Atmospheric pressure
Example 1 - If your tyre pressure gauge reads 220 kPa , what is the actual pressure in the tyre in kPa and Pa ?

Example 2 - What is the gauge pressure if you have an actual pressure of 1072 Torr?

Whiteboards: $1 \mathbf{~ a t m}=1.013 \times 10^{5} \mathbf{P a}=101.3 \mathrm{kPa}=760$ Torr $=14.7 \mathbf{~ p s i}$

1. What is the absolute pressure if you read 35 psi gauge? Answer in psi and Pascals (49.7 psi, 3.42E5 Pa)	2. If you have an absolute pressure of 812 Torr, what is the gauge pressure? Answer in Torr (52 Torr)

$\mathrm{P}=$ Pressure (gauge) in Pa
$\rho=$ Density in $\mathrm{kg} \mathrm{m}^{-3}$
$\mathrm{g}=9.81 \mathrm{~N} \mathrm{~kg}^{-1}$
$\mathrm{h}=$ depth in m

Example - What is the gauge pressure $3800 \mathrm{~m}(12,500 \mathrm{ft})$ deep in the ocean where the wreck of the Titanic lies? Calculate it in Pa , PSI and atm. $\left(\rho=1.025 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right)$

$$
\begin{aligned}
& P=P_{o}+\rho_{f} g d \\
& \begin{array}{l}
\mathrm{P}=\text { Absolute Pressure in Pa } \\
\mathrm{P}_{\mathrm{o}}=\text { Atmospheric pressure above fluid } \mathrm{Pa} \\
\rho_{\mathrm{f}}=\text { Density (of fluid?) in } \mathrm{kg} \mathrm{~m}^{-3} \\
\mathrm{~g}=9.81 \mathrm{Nkg}^{-1} \\
\mathrm{~d}=\text { depth in } \mathrm{m}
\end{array}
\end{aligned}
$$

Example - At what depth below fresh water is the absolute pressure 100 . $\mathrm{PSI} ?\left(\mathrm{Po}=1.013 \times 10^{5} \mathrm{~Pa}, \rho=1.00 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right)$

Whiteboards:

1. The water level in a water tower is $30 . \mathrm{m}$ above the point where a faucet is. What is the absolute pressure in Pa and PSI? $\left(\mathrm{P}_{\mathrm{o}}=1.013 \times 10^{5} \mathrm{~Pa}, \rho=1.00 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right)$ What is the gauge pressure in PSI? $\mathrm{P}=\mathrm{P}_{\mathrm{o}}+\rho \mathrm{gh} \quad(4.0 \mathrm{EE} 5 \mathrm{~Pa}, 57 \mathrm{psi}, 43 \mathrm{psi})$
2. The density of air at STP is $1.29 \mathrm{~kg} \mathrm{~m}^{-3}$. What is the difference in air pressure between the top and the bottom of the 381 m tall Empire State Building in Pa ? (assume the density is constant....) $\Delta \mathrm{P}=\rho \mathrm{gh}$
If the pressure is $1.025 \times 10^{5} \mathrm{~Pa}$ at the bottom, what is the pressure at the top?
(4.82E3 Pa, 0.977E5 Pa (9.77E4 Pa))
3. At what depth in mercury is the gauge pressure equal to one atmosphere? $\left(\rho=13.6 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right)$ (answer in m and mm)
$\mathrm{P}=\rho \mathrm{gh}$
$1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=101.3 \mathrm{kPa}=760$ Torr $=14.7 \mathrm{psi}$
($0.759 \mathrm{~m}, 760 \mathrm{~mm}$)

$$
P=\frac{F}{A} \quad P_{i n}=P_{o u t}
$$

Example - A hydraulic jack has an input piston with a diameter of 8.20 mm , and an output piston diameter of 95.0 mm . What force in Newtons do you need to apply to lift a ton? (8900 N) What is the pressure in Pa? How far must you move the input cylinder to raise the car 10.0 cm ?

Whiteboards:

1. A car has a master cylinder bore size of 2.50 cm , and a caliper bore of 4.40 cm . What force does the caliper exert if you press on the master cylinder with a force of 150 N ? (465 N)
2. A hydraulic jack has an output cylinder with a 5.2 cm bore, and needs to lift a $53,400 \mathrm{~N}$ weight with an input force of 356 N . What is the diameter of the input cylinder needed? (0.0042 m or 0.42 cm)
```
\(B=\rho_{f} V_{f} g\)
    \(\rho_{\mathrm{f}}=\) Density of fluid in \(\mathrm{kg} \mathrm{m}^{-3}\)
    \(\mathrm{V}_{\mathrm{f}}=\) Volume of displaced fluid in \(\mathrm{m}^{3}\)
    \(\mathrm{g}=9.81 \mathrm{~N} \mathrm{~kg}^{-1}\)
```

Example - What is the buoyant force on a 3.0 cm diameter air bubble under water? $\rho \mathrm{H} 2 \mathrm{O}=1.0 \mathrm{E} 3 \mathrm{~kg} \mathrm{~m}^{-3}$

Example - What is the buoyant force on a 5.45 kg iron shot submerged in water? What is the weight of the shot in air, and what is its apparent weight submerged?
$\rho \mathrm{Fe}=7.8 \mathrm{E} 3 \mathrm{~kg} \mathrm{~m}^{-3}, \rho \mathrm{H} 2 \mathrm{O}=1.0 \mathrm{E} 3 \mathrm{~kg} \mathrm{~m}^{-3}, \rho=\mathrm{m} / \mathrm{V}$ so $\mathrm{V}=\mathrm{m} / \rho$

Example - The King's crown has a mass of 14.7 kg , but appears to have a mass of only 13.4 kg when weighed when it is submerged in water. What is the density of the crown? Is it gold?
$\rho \mathrm{Au}=19.3 \mathrm{E} 3 \mathrm{~kg} \mathrm{~m}^{-3}, \rho \mathrm{H} 2 \mathrm{O}=1.0 \mathrm{E} 3 \mathrm{~kg} \mathrm{~m}^{-3}, \rho=\mathrm{m} / \mathrm{V}$ so $\mathrm{V}=\mathrm{m} / \rho$

Whiteboards:

1. What is the buoyant force on a rectangular block of wood that measures $12 \times 23 \times 15 \mathrm{~cm}$ if it is submerged in the Dead Sea where the density of the water is $1240 \mathrm{~kg} \mathrm{~m}^{-3}$? (convert cm to m first)
(50. N)
2. A $15 \times 15 \times 5.0 \mathrm{~cm}$ piece of wood floats in water ($1000 . \mathrm{kg} \mathrm{m}^{-3}$) face down in the water with the waterline 3.1 cm up the 5.0 cm side:
What is its mass?
What is its density?
($620 \mathrm{~kg} \mathrm{~m}^{-3}$)
3. A $25 \times 25 \times 10 \mathrm{~cm}$ block of iron $\left(7.80 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right)$ floats on mercury $\left(13.6 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right)$ If one of the $25 \times 25 \mathrm{~cm}$ faces is down into the mercury, how far into the mercury does the block sink before coming to equilibrium? $(5.7 \mathrm{~cm})$

Videos 10 I - Continuity

Name

Example - What is the volume flow rate of air moving at $1.30 \mathrm{~m} / \mathrm{s}$ down a hallway that measures 3.20 m by 4.10 m ? What time will it take to change the air in a room that measures $10.2 \mathrm{~m} \times 14.0 \mathrm{~m} \times 5.20 \mathrm{~m}$?

Concept 1

$\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$
A = Area (m ${ }^{2}$)
$\mathrm{v}=$ Velocity $(\mathrm{m} / \mathrm{s})$
A 12.0 cm inner diameter pipe with water flowing at $1.18 \mathrm{~m} / \mathrm{s}$ narrows to 5.00 cm inner diameter. What is the velocity in the narrow part? What is the volume flow rate in $\mathrm{m}^{3} / \mathrm{s}$?

Whiteboards:

1. Water is going at $1.45 \mathrm{~m} / \mathrm{s}$ down a fire hose with a 6.20 cm inner diameter. If the water leaves the hose at a speed of $17.3 \mathrm{~m} / \mathrm{s}$, what is the inner diameter of the nozzle? $(1.79 \mathrm{~cm})$
2. All the air going down a $3.0 \times 4.0 \mathrm{~m}$ hallway goes through a doorway that measures 74 cm by 203 cm . If the air in the doorway is going $1.8 \mathrm{~m} / \mathrm{s}$, what is the speed of the air in the hallway? $(0.23 \mathrm{~m} / \mathrm{s})$
3. A hydraulicking monitor or giant discharges water at $44.0 \mathrm{~m} / \mathrm{s}$ from a 3.0 cm diameter nozzle. What is the flow rate in $\mathrm{m} 3 / \mathrm{s}$, and what is the velocity in the 12 cm diameter supply pipe?
What recoil force does it exert? $\left(0.031 \mathrm{~m}^{3} / \mathrm{s}, 2.75 \mathrm{~m} / \mathrm{s}, 1400 \mathrm{~N}\right.$ don't worry about the force so much)

Videos 10J - Bernoulli

\qquad

Write down the derivation:

$$
P_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

$\mathrm{P}=$ Pressure in Pa
$\rho=$ Density of fluid in $\mathrm{kg} \mathrm{m}^{-3}$
$\mathrm{g}=9.81 \mathrm{~N} \mathrm{~kg}^{-1}$
$\mathrm{h}=$ Height in m
$\mathrm{v}=$ velocity in m / s

Water with a density of $1000 \mathrm{~kg} \mathrm{~m}^{-3}$
pours from a very large tank of water from a pipe that is 34.0 m
below the surface of the water.
What is its velocity?

Example

Air with a density of $1.29 \mathrm{~kg} \mathrm{~m}^{-3}$ flows
at $2.00 \mathrm{~m} / \mathrm{s}$ where a duct is 48.0 cm in diameter under a pressure of 1.00×10^{5} Pa . What is the a . velocity and b .
pressure when the pipe narrows to 12.0 cm ?

Whiteboards.

1. The wind is moving horizontally at $12.0 \mathrm{~m} / \mathrm{s}$ over a level rectangular roof that measures 4.50 m by 8.00 m .
A. What is the pressure difference between the bottom (still air) and the top (moving air) of the roof surface? Use $1.29 \mathrm{~kg} \mathrm{~m}^{-3}$ for the density of the air, neglect the change in height, and assume (if you need to) that the pressure underneath is $1.013 \times 10^{5} \mathrm{~Pa}$. B. What is the net upward force on the roof? ($92.9 \mathrm{~Pa}, 3340 \mathrm{~N}(751 \mathrm{lbs})$)
2. A very large Nitrogen tank is at 2000. PSI. If nitrogen at STP has a density of $1.17 \mathrm{~kg} \mathrm{~m}^{-3}$, how fast is the gas going if the valve breaks off when the tank is horizontal
(assume P1 is 2000 PSI (convert), v1 is zero?, P2 is 1.013 E 5 Pa , solve for v2. Ignore change in height.) $1 \mathrm{~atm}=14.7 \mathrm{PSI}$
(4835.9 or roughly $4840 \mathrm{~m} / \mathrm{s}, 3090 \mathrm{~N}(695 \mathrm{lbs}$))
3. What pressure is needed in a fountain if it is spraying water straight up to a height of 23.2 m ? What is the gauge pressure?
$\rho=1000 . \mathrm{kg} \mathrm{m}^{-3}, \mathrm{P}_{2}=1.013 \mathrm{E} 5 \mathrm{~Pa}$
$\left(3.29 \times 10^{5} \mathrm{~Pa}, 2.28 \times 10^{5} \mathrm{~Pa}\right)$
4. A water faucet breaks in the Physics room, spraying water upwards. If the gauge pressure in the water mains is 21.0 PSI, (at $\mathrm{v}=0$) with what speed does the water hit the ceiling 4.80 m above the faucet? How much time does it take a custodian to come down and fix the leak?
$\rho=1000 . \mathrm{kg} \mathrm{m}^{-3}, \mathrm{P}_{2}=1 \mathrm{~atm}=1.013 \mathrm{E} 5 \mathrm{~Pa} .1 \mathrm{~atm}=14.7 \mathrm{PSI}$ ($14.0 \mathrm{~m} / \mathrm{s}$)
5. Water flows at $2.00 \mathrm{~m} / \mathrm{s}$ at ground level with a pressure of $1.15 \times 10^{5} \mathrm{~Pa}$ through a 10.0 cm diameter pipe. What is the pressure if it is at an elevation of 3.50 m going through a 6.00 cm diameter pipe? (Find the second speed first. $\rho=1000 . \mathrm{kg} \mathrm{m}^{-3}$)
(6.72×10 ${ }^{4} \mathrm{~Pa}$)

10K

Definition of Viscosity

$$
F=\eta A \frac{v}{l}
$$

$\mathrm{F}=$ Force needed to maintain velocity (N)
$\eta=$ Viscosity in $\mathrm{Ns} \mathrm{m}^{-2}$ or Pas
$\mathrm{A}=$ Area of plates in m^{2}
$\mathrm{l}=$ distance separating plates in m
$\mathrm{v}=$ velocity of the plates in m / s
1 Pas $=1000$ centipoises (cP)

Example

A person slides a $23.0 \mathrm{~cm} \times 45.0 \mathrm{~cm}$ pan over the surface of some
molasses with a viscosity of 8.7 Pa s . The molasses is 2.1 cm deep, and the person applies a pound of force. $(4.45 \mathrm{~N})$ What speed will the pan move across the surface?

10 L
Stokes's Law - a small sphere moving through a fluid
$F_{\mathrm{D}}=6 \pi \eta r v$

Example

A droplet of water mist $\left(\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}\right)$ has a radius of 4.8 microns. What is its terminal velocity as it falls through air $\left(\eta=1.8 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}\right)$? (ignore the buoyant force)
$F_{\mathrm{D}}=6 \pi \eta r v$
$F_{D}=$ Force needed to maintain velocity (N)
$\eta=$ Viscosity in Nsm^{-2} or Pas
$r=$ radius of sphere in m
$\mathrm{v}=$ velocity of the sphere in m / s

10M
Reynolds number-fluid in a pipe

$$
R=\frac{v r \rho}{\eta} \quad \frac{\text { Inertial Forces }}{\text { Viscous forces }}
$$

R = Reynolds number (unitless!!!!)
$\eta=$ Viscosity in Nsm^{-2} or Pas
$\rho=$ density of fluid in $\mathrm{kg} \mathrm{m}^{-3}$
$r=$ radius of object or pipe in m
$\mathrm{v}=$ velocity of the object relative to fluid in m / s

Example

Water at $20 .{ }^{\circ} \mathrm{C}\left(\eta=1.0 \times 10^{-3} \mathrm{Pas}, \rho=1000 . \mathrm{kg} \mathrm{m}^{-3}\right)$ flows down an 8.0 mm diameter glass tube at $0.120 \mathrm{~m} / \mathrm{s}$. Calculate the Reynolds number to determine if the flow is laminar. What is the maximum velocity the water could have and still be laminar? (For sure \ldots set $R=1000$)
$\bar{\Longrightarrow} \quad R=\frac{v r \rho}{\eta}$

Whiteboards.

5. What is the maximum speed air could move down a 12.2 cm diameter duct and have laminar flow? ($\mathrm{R}<1000$)
$\rho=1.29 \mathrm{~kg} \mathrm{~m}^{-3}$
$\eta=1.81 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}$
($0.230 \mathrm{~m} / \mathrm{s}$)

