Name
Show your work, round to the correct significant figures, circle your answers, and label them with units.
$\left(1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=101.3 \mathrm{kPa}=14.7 \mathrm{psi}=760\right.$ Torr; $1 \mathrm{~m}^{3}=1000$ liters; $\left.\mathrm{p}_{\text {absolute }}=\mathrm{p}_{\text {gauge }}+1 \mathrm{~atm} ;\right)$
When you have finished this, go to the website and check your answers. If you got a problem wrong, cross it off on the front, and do it correctly on the back.

1. A circular porthole in an airplane has a diameter of 37.0 cm . If there is a pressure difference of $31,510 \mathrm{~Pa}$ from one side of the window to the other, what is the net force pushing out on the porthole?
2. A cannon ball has a density of $7820 \mathrm{kgm}^{-3}$ and a mass of 23.2 kg . What is its radius if it is perfectly spherical?
3. A hydraulic jack has an input piston diameter of 0.850 cm , and an output piston diameter of 4.50 cm . What force must you exert on the input piston to lift a 1210 kg car?

4a. An empty beaker 8.20 cm in diameter is pushed 10.3 cm into mercury $\left(\rho=13.6 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\right)$. What is the net upward force on the bottom of the beaker? (Assume the pressure above the mercury is 1 atm)

4b. What is the gauge pressure in PSI at a depth of 8.50 m in fresh water? $\quad\left(\rho=1000 . \mathrm{kg} \mathrm{m}^{-3}\right)$

4c. At what depth in ocean water $\left(\rho=1025 \mathrm{kgm}^{-3}\right)$ is the absolute pressure 8320 Torr?

5a. A cylinder has a radius of 0.920 cm and is 25.0 cm long. How far will it sink into a mixture with a density of $865 \mathrm{~kg} \mathrm{~m}^{-3}$ if it has a mass of 37.5 grams assuming it is weighted so it floats vertically?

5 b. What upward force would you need to exert on a 11.5 kg piece of Murralite $\left(\rho=1666 \mathrm{kgm}^{-3}\right)$ submerged in the dead sea where the water has a density of $1240 \mathrm{kgm}^{-3}$ to keep it from sinking?

5c. A hot air balloon is 9.00 m in radius (assume it is spherical) and contains hot air with a mean density of $0.950 \mathrm{kgm}^{-3}$. Calculate the lifting capacity (in N) of the hot air if it is surrounded by air with a density of $1.31 \mathrm{kgm}^{-3}$

