Translational Equilibrium 9.1

1.	Find the third force (the equilibrant) that would prevent the system from accelerating. 23.16 N At 292.8° Trig angle. (22.8° to the right of the -y axis)
2.	Find the third force (the equilibrant) that would prevent the system from accelerating. 6.000 N At 348.9° Trig angle. (11.1° below the +x axis)
3.	Find the third force (the equilibrant) that would prevent the system from accelerating. 56.4 N @ 318.8° Trig angle. (41.2° below the +x axis)
4.	Cable A makes an angle of 63.0° with the horizontal, and B makes an angle of 23.0° with the horizontal. What is the tension in each cable for there to be no acceleration of the system? $\begin{aligned} & \mathrm{A}=606 \mathrm{~N} \\ & \mathrm{~B}=299 \mathrm{~N} \end{aligned}$
5.	Find the tensions in Cable C and D: $\begin{aligned} & \mathrm{C}=151 \mathrm{~N} \\ & \mathrm{D}=151 \mathrm{~N} \end{aligned}$

6.	Find the tensions in Cable C and D: $\begin{aligned} & \mathrm{C}=107 \mathrm{~N} \\ & \mathrm{D}=390 . \mathrm{N} \end{aligned}$
7.	Find the tensions in Cable C and D: $\begin{aligned} & \mathrm{C}=270 . \mathrm{N} \\ & \mathrm{D}=224 \mathrm{~N} \end{aligned}$
8.	Find the tensions in Cable C and D: $\begin{aligned} & \mathrm{C}=129 \mathrm{~N} \\ & \mathrm{D}=129 \mathrm{~N} \end{aligned}$
9.	Find the tensions in Cable C and D: $\begin{aligned} & \mathrm{C}=389 \mathrm{~N} \\ & \mathrm{D}=347 \mathrm{~N} \end{aligned}$
10.	Cable A has a force of 23 N along it, what must be the tensions in cable C and B for there to be no acceleration of the system? $\begin{aligned} & \mathrm{B}=17 \mathrm{~N} \\ & \mathrm{C}=27 \mathrm{~N} \end{aligned}$

Also from your textbook: Chapter 9: 1,5, 9, 11, 12, 14 starting p. 247

