Angular Dynamics problems from 8.2

A. What force acting at 25.0° with a line perpendicular to the end of a 13.0 cm long wrench will generate 7.80 mN of torque about the left side of the wrench? (66.2 N)

$\mathrm{r}=13.0 \mathrm{~cm}$
C. A 35.0 cm wrench makes a 23.0° angle above the horizontal. What is the torque about the left side of the wrench if a 24.0 N force is exerted vertically upward at the end? $(7.73 \mathrm{mN})$

B. Calculate the torque about the left side of the wrench if 52.0 N acts at an 21.0° angle with the end of a 13.0 cm long wrench. (2.42 mN)

$\mathrm{r}=13.0 \mathrm{~cm}$
D. A force is exerted at an angle of 129° with a 16.0 cm wrench as shown below. Calculate the force needed to create 3.80 mN of torque about the left side of the wrench. (30.6 N)

Moments of inertia: Cylinder: $\mathrm{I}={ }^{1} /{ }_{2} \mathrm{mr}^{2}$, Sphere: $\mathrm{I}={ }^{2} / 5 \mathrm{mr}^{2}$, Thin Ring or Point Mass: $\mathrm{I}=\mathrm{mr}^{2}$
Simple F = ma problems: $\boldsymbol{\Gamma}=\mathbf{I} \boldsymbol{\alpha}$

1. A baton requires 5.70 mN of torque to accelerate at $18.4 \mathrm{rad} / \mathrm{s} / \mathrm{s}$ about its center. What is the moment of inertia? (0.310 kgm^{2})
2. A flywheel with a moment of inertia of $0.859 \mathrm{~kg} \mathrm{~m}^{2}$ accelerates at $13.0 \mathrm{rad} / \mathrm{s} / \mathrm{s}$. What is the torque? $(11.2 \mathrm{mN})$
3. A motor with 43.0 mN of torque accelerates at $153 \mathrm{rad} / \mathrm{s} / \mathrm{s}$. What is its moment of inertia? $\left(0.281 \mathrm{kgm}^{2}\right)$
4. A torque of 21.0 mN acts on a motor with a moment of inertia of $1.53 \mathrm{~kg} \mathrm{~m}^{2}$. What is the angular acceleration? (13.7 $\mathrm{rad} / \mathrm{s} / \mathrm{s}$)
5. What torque will accelerate a motor with a moment of inertia of $3.87 \mathrm{~kg} \mathrm{~m}^{2}$ at $6.60 \mathrm{rad} / \mathrm{s} / \mathrm{s}$? $(25.5 \mathrm{mN})$
$\mathrm{F}=$ ma problems, but $\mathrm{I}={ }^{1} / 2 \mathrm{mr}^{2}$ (cylinder), ${ }^{2} / 5 \mathrm{mr}^{2}$ (sphere), or kinematics, or $\Gamma=\mathrm{rF}$
6. A 0.400 m diameter, 4.30 kg sphere accelerates about its center at $6.80 \mathrm{rad} / \mathrm{s} / \mathrm{s}$. What is the torque? $(0.468 \mathrm{mN})$
7. A drill with a moment of inertia of $0.0180 \mathrm{~kg} \mathrm{~m}^{2}$ is slowed by a frictional torque of 0.270 mN . If it is moving at $142 \mathrm{rad} / \mathrm{s}$, how many radians will it go through before it stops? (672 rad)
8. A grinding wheel with a diameter of 0.640 m and a moment of inertia of $0.172 \mathrm{~kg} \mathrm{~m}^{2}$ decelerates at $-8.90 \mathrm{rad} / \mathrm{s} / \mathrm{s}$ because of a tangential friction force applied at the edge. What is this force? (4.78 N)
9. A torque of 19.0 mN acts on a flywheel with a moment of inertia of $3.20 \mathrm{~kg} \mathrm{~m}^{2}$. If it starts at rest, in what time will it go through 16.0 radians? (2.32 s)
10. A torque of 3.50 mN acts on a $7.10 \mathrm{~kg}, 0.132 \mathrm{~m}$ diameter shot put. (a sphere) What is the angular acceleration of the sphere? ($283 \mathrm{rad} / \mathrm{s} / \mathrm{s}$)
Same as above with unit conversions:
11. A 0.219 m diameter bowling ball has a tangential force 5.50 N acting on it and it accelerates from rest going through 13.0 rotations in 3.21 seconds. What is the moment of inertia of the ball? $\left(0.0380 \mathrm{kgm}^{2}\right)$
12. A 0.310 m radius flywheel (essentially a thin ring) with a mass of 3.20 kg . What is its rate of deceleration if you exert a force of 2.20 N tangentially at its edge? $(2.22 \mathrm{rad} / \mathrm{s} / \mathrm{s})$
13. A flywheel is a 13.2 kg 1.80 m diameter thin ring. If you exert a force of 51.0 N tangentially at its edge, what is its angular acceleration? ($4.29 \mathrm{rad} / \mathrm{s} / \mathrm{s}$)
14. A flywheel that is a 0.730 m diameter thin ring with a mass of 16.0 kg would require what torque to accelerate from rest to 1120 RPM in 8.10 seconds? (30.9 mN)
15. What is the moment of inertia of a 0.258 m radius flywheel if when you exert a tangential force of 11.5 N at the edge it accelerates from rest to 680 . RPMs in 123 rotations? $\left(0.904 \mathrm{kgm}^{2}\right.$)
Same as above with unit conversions and kinematics:
16. A 161 kg 4.72 m diameter (cylindrical) merry go round is sped up from rest by a 25.0 N force applied tangentially at its edge. What is its speed in RPMs after 38.0 seconds? (47.8 RPM)
17. A 2.10 m radius, 351 kg (cylindrical) merry go round spinning at 75.0 RPM slows to a halt in 11.5 rotations. What force applied tangentially at the edge would cause this? (157 N)
18. A 232 kg 4.10 m diameter (cylindrical) Merry go round is stopped from a speed of 94.0 RPM in 55.0 seconds. What frictional force applied tangentially at the edge would cause this? (42.6 N)
19. A 243 kg 1.70 m radius (cylindrical) merry go round stops from a speed of 68.0 RPM because of a frictional force applied at the edge of 8.50 N . How many rotations does it go through in stopping? (98.1 rotations)
20. A 4.60 m diameter (cylindrical) merry go round speeds up from rest going through 5.10 rotations in 41.0 seconds because of a 15.0 N force applied tangentially at the edge. What is the mass of the merry go round? $(342 \mathrm{~kg})$
