Angular Kinematics problems from 8.1

Tangential Relationships: $\mathbf{s}=\boldsymbol{\theta} \mathbf{r}, \mathbf{v}=\omega \mathbf{r}, \mathbf{a}=\boldsymbol{\alpha} \mathbf{r}$

1. A 0.0760 m diameter $(76 \mathrm{~mm})$ skateboard wheel rolls through 137 rotations. What linear distance did it travel? (32.7 m)
2. What is the angular acceleration of a 0.630 m diameter bicycle wheel if it is accelerating linearly at 8.20 $\mathrm{m} / \mathrm{s} / \mathrm{s}$? $(26.0 \mathrm{rad} / \mathrm{s} / \mathrm{s})$
3. A 0.0660 m diameter skateboard wheel travels 12.0 m . How many rotations does it go through? (57.9 rotations)
4. A 0.650 m diameter wheel accelerates at $1.54 \mathrm{rad} / \mathrm{s} / \mathrm{s}$. What is the tangential acceleration of the edge? ($0.5005 \mathrm{~m} / \mathrm{s} / \mathrm{s}$)
5. A wheel goes through 143 rotations when it rolls linearly 14.2 m . What is the radius of the wheel? (0.0158 m)
Tangential Relationships with unit conversions: 1 rev or rot $=2 \pi$ radians, $\mathbf{1}$ minute $=\mathbf{6 0}$ seconds
6. What is the linear velocity 0.120 m from the center of a grinding disk spinning at 1450 RPM? $(18.2 \mathrm{~m} / \mathrm{s})$
7. What is the angular velocity of a 0.920 m radius aircraft tire in rotations/second when it is has a linear velocity of $48.0 \mathrm{~m} / \mathrm{s}$? ($8.30 \mathrm{rot} / \mathrm{s}$)
8. A merry go round spins at 0.590 rotations/second. What is the tangential velocity 1.80 m from the center? $(6.67 \mathrm{~m} / \mathrm{s})$
9. A 0.940 m diameter wheel has a tangential velocity at its edge of $25.0 \mathrm{~m} / \mathrm{s}$. What is its angular velocity in RPM? (508 RPM)
10. A hard drive spins at 7200 RPM. What distance from the center has a tangential velocity of $12.0 \mathrm{~m} / \mathrm{s}$? (0.0159 m)
Simple Rotational kinematics: $\mathbf{v}=\mathbf{u}+\mathbf{a t}, \mathbf{s}=(\mathbf{u}+\mathbf{v}) \mathbf{t} / \mathbf{2}, \mathbf{v}^{2}=\mathbf{u}^{2}+\mathbf{2 a s}, \mathbf{s}=\mathbf{u t}+\frac{1}{2} \mathbf{a t}^{2}$
11. A drill going $98.0 \mathrm{rad} / \mathrm{s}$ decelerates at $-1.20 \mathrm{rad} / \mathrm{s} / \mathrm{s}$ for 15.0 s . What is the final angular velocity in $\mathrm{rad} / \mathrm{s}$? ($80.0 \mathrm{rad} / \mathrm{s}$)
12. A drill speeds up from rest to $156 \mathrm{rad} / \mathrm{s}$ in 5.70 s . Through what angle in radians does it go? (445 rad)
13. A drill goes through 132 radians in 8.80 s slowing to rest. What was its initial angular velocity in rad/s? (30.0 rad/s)
14. A drill speeds up from $11.0 \mathrm{rad} / \mathrm{s}$ to $35.0 \mathrm{rad} / \mathrm{s}$ in 184 radians. What is its angular acceleration? (3.00 $\mathrm{rad} / \mathrm{s} / \mathrm{s}$)
15. A drill goes through 526 radians accelerating at $2.58 \mathrm{rad} / \mathrm{s} / \mathrm{s}$ from rest. What is its final angular velocity in rad/s? (52.1 rad/s)
Rotational Kinematics with unit conversions:
16. A motor speeds up from 1350. RPM with an angular acceleration of $2.90 \mathrm{rad} / \mathrm{s} / \mathrm{s}$ for 19.0 seconds. Through what angle in radians does it rotate? (3210 rad)
17. A car tire initially rotating at 37.0 rotations per second slows down through 148 rotations in 5.20 seconds. What is its final angular velocity in rotations per second? (19.9 rot/s)
18. A drill speeds up from 680 . RPM to 1540 RPM with an acceleration of $1.80 \mathrm{rad} / \mathrm{s} / \mathrm{s}$. How many rotations does it go through? (926 rotations)
19. A skateboard wheel speeds up from 5.30 rotations/sec to 12.0 rotations/s in 9.00 seconds. What is the angular acceleration in $\mathrm{rad} / \mathrm{s} / \mathrm{s}$? $(4.68 \mathrm{rad} / \mathrm{s} / \mathrm{s})$
20. A turntable accelerates at $0.835 \mathrm{rad} / \mathrm{s} / \mathrm{s}$ from rest to 33.3 RPM . What is its angular displacement in radians? (7.28 rad)
Rotational Kinematics with tangential relationships:
21. A car with 0.340 m radius tires going $19.2 \mathrm{~m} / \mathrm{s}$ decelerates at $1.20 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 2.30 s . What is the final angular velocity of the tires? ($48.4 \mathrm{rad} / \mathrm{s}$)
22. A car with 0.840 m diameter wheels accelerates from rest with an acceleration of $6.40 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 3.50 seconds. Through what angle in radians do the wheels go? (93.3 radians)
23. A 0.110 m radius ball going $5.80 \mathrm{~m} / \mathrm{s}$ rolls to a stop in 9.70 seconds. What was the angular acceleration of the ball in rad $/ \mathrm{s} / \mathrm{s}$? $(-5.44 \mathrm{rad} / \mathrm{s} / \mathrm{s})$
24. A 0.360 m radius car tire goes from $12.5 \mathrm{rad} / \mathrm{s}$ to $36.8 \mathrm{rad} / \mathrm{s}$ with a linear acceleration of $3.90 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What linear distance does the car travel? (19.9 m)
25. A 0.125 m radius grinding wheel speeds up from $142 \mathrm{rad} / \mathrm{s}$ to $259 \mathrm{rad} / \mathrm{s}$ in 13.0 s . Through what distance does a point in the edge of the wheel travel in this time? (326 m)
