Angle Conversions:
1 rotation $=1$ revolution $=2 \pi$ radians $=360$ degrees

1. A grinding wheel goes through 2.70 rotations. What angle in radians is this? (17.0 rad)
2. A tire goes through 163 radians. What is that angle in rotations? (25.9 rot)
3. A diver's body rotates through 510. degrees. What is that in radians? (8.90 rad)
4. A wheel rotates through 45.0 radians. What is that in degrees? (2580 degrees)
5. A drill goes through 140. rotations starting up. How many radians is this? (880. rad)
6. Convert $34.0 \mathrm{rot} / \mathrm{s}$ to RPM. (2040 RPM)
7. Convert $670 . \mathrm{RPM}$ to $\mathrm{rot} / \mathrm{s}$. ($11.2 \mathrm{rot} / \mathrm{s}$)
8. Convert 45.0 RPM to $\mathrm{rad} / \mathrm{s}$. ($4.71 \mathrm{rad} / \mathrm{s}$)
9. Convert $15.0 \mathrm{Rot} / \mathrm{s}$ to $\mathrm{rad} / \mathrm{s}$. ($94.2 \mathrm{rad} / \mathrm{s}$)

Tangential Relationships: $\mathbf{s}=\boldsymbol{\theta} \mathbf{r}, \mathbf{v}=\omega \mathbf{r}, \mathbf{a}=\boldsymbol{\alpha} \mathbf{r}$
14. A 13.0 cm radius grinding wheel goes through 1400. radians. What distance does its edge travel in this time? (182 m)
15. A 45.0 cm diameter car tire rolls 56.0 m . Through what angle in radians does it go? (249 rad)
17. A 78.0 cm diameter bike wheel is rolling at $15.0 \mathrm{~m} / \mathrm{s}$ What is its angular velocity in $\mathrm{rad} / \mathrm{s}$? (38.5 rad/s)
18. A drill accelerates at $15.0 \mathrm{rad} / \mathrm{s} / \mathrm{s}$. What is the linear acceleration 0.024 m from the center of rotation? $(0.36 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
19. A skateboard with $60 . \mathrm{mm}$ (diameter) wheels accelerates at $2.30 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is the angular acceleration? (76.7 rad/s/s)

Tangential Relationships with Conversions:

20. A skateboard with 55 mm (diameter) wheels goes through 13.0 rotations, what distance does it travel? (2.25 m)
21. A 45.0 cm radius wheel rolls through 310 . degrees. What distance does it travel? $(2.43 \mathrm{~m})$
22. What is the linear speed (in m / s) at the edge of a 13.0 cm radius grinding wheel spinning at 1200. RPM? ($16.3 \mathrm{~m} / \mathrm{s}$)
23. A 1.80 m radius merry go round spins at 1.40 $\mathrm{rot} / \mathrm{s}$. What is the speed at its edge? $(15.8 \mathrm{~m} / \mathrm{s})$
