Name \qquad

Favorite Musician

Show your work, and circle your answers and use sig figs to receive full credit.
I (about centers): cylinder $={ }^{1} / 2 \mathrm{mr}^{2}$, ring $/$ point $=\mathrm{mr}^{2}$, sphere $={ }^{2} / 5 \mathrm{mr}^{2}$, rod $={ }^{1} / 12 \mathrm{~mL}^{2}\left(=1 / 3 \mathrm{~mL}^{2}\right.$ about end $)$ 1-3: A $12.0 \mathrm{~g}, \mathbf{0 . 0 1 4 0} \mathrm{~m}$ radius marble rolls down an incline that is $\mathbf{3 . 8 0} \mathrm{m}$ long, and loses $\mathbf{0 . 1 2 0} \mathrm{m}$ of elevation.

1. Set up the appropriate dynamics or conservation of energy equation, substitute for $\underline{\omega \text { or } \alpha}$, and for \underline{I}, and solve

2. Solve for the final velocity of the marble at the bottom of the incline.
3. Calculate the acceleration of the marble as it rolls down the incline.

4-5: A 45.0 kg child is $\mathbf{1 . 8 0} \mathbf{~ m}$ from the center of a $\mathbf{2 . 0 0} \mathbf{m}$ radius merry go round that is a $\mathbf{1 6 0} \mathbf{~ k g}$ cylinder. 4. If the merry go round speeds up from $1.40 \mathrm{rad} / \mathrm{s}$ to $2.10 \mathrm{rad} / \mathrm{s}$ in 4.00 seconds, what torque was applied?
5. If the merry go round is spinning at 45.0 RPM and the child moves from 1.80 m from the center to 0.600 m from the center, what is the new angular velocity of the merry go round in RPMs?

