Momentum Practice Questions for 7.2

1. A 1200 Kg car going $13 \mathrm{~m} / \mathrm{s}$ collides with a 4200 Kg truck at rest. Their bumpers lock. What is their speed afterwards? ($2.89 \mathrm{~m} / \mathrm{s}$)
2. A 60.0 Kg person running $3.00 \mathrm{~m} / \mathrm{s}$ East collides head on with a 100 Kg person running $2.00 \mathrm{~m} / \mathrm{s}$ the other way. What is their final velocity if they stick together? $(0.125 \mathrm{~m} / \mathrm{s}$ West)
3. A $50 . \mathrm{Kg}$ ice skater at rest throws a 5.0 Kg shot put at a velocity of $+3.5 \mathrm{~m} / \mathrm{s}$. What is the recoil velocity of the skater? ($-0.35 \mathrm{~m} / \mathrm{s}$)
4. A 1200 Kg car going $15 \mathrm{~m} / \mathrm{s}$ rear-ends with a $800 . \mathrm{Kg}$ car going $5.0 \mathrm{~m} / \mathrm{s}$ in the same direction. Their bumpers lock. What is their speed afterwards? ($11 \mathrm{~m} / \mathrm{s}$)
5. A bullet going $375 \mathrm{~m} / \mathrm{s}$ imbeds in a stationary block of wood. The 1.42 kg bullet and block combo are going $16.5 \mathrm{~m} / \mathrm{s}$ after the collision. What was the mass of the bullet? $(0.0625 \mathrm{~kg})$
6. Two football players strike each other head on. Player 1 has a mass of 72.0 kg and is running $5.20 \mathrm{~m} / \mathrm{s}$ to the East, and player 2 has a mass of 86.0 kg is running to the West. If they stick together, and are together moving $1.60 \mathrm{~m} / \mathrm{s}$ to the West after the collision, was the velocity of player 2 before the collision? (Speed and direction) ($7.29 \mathrm{~m} / \mathrm{s}$ to the West)
7. Two football players strike each other head on. Player 1 has a mass of 119 kg and is running $6.20 \mathrm{~m} / \mathrm{s}$ to the East, and player 2 has a mass of 102 kg is running $4.20 \mathrm{~m} / \mathrm{s}$ to the West. What is their post-collision velocity if they stick together? (Speed and direction) (1.40 m/s East)
8. A 2000. Kg airplane going $45.0 \mathrm{~m} / \mathrm{s}$ fires a 2.00 Kg shell forward at a speed of $1200 . \mathrm{m} / \mathrm{s}$. What is the final velocity of the plane? (Planes crashed because of this!) $(43.8 \mathrm{~m} / \mathrm{s})$
9. A 14.5 g bullet traveling $783 \mathrm{~m} / \mathrm{s}$ horizontally strikes a 9.24 Kg block of wood at rest on a level frictionless table. The bullet goes through the block, but is traveling only $382 \mathrm{~m} / \mathrm{s}$ in the same direction after the collision. What is the velocity of the block after the collision? (Assume the block loses no mass) $(0.629 \mathrm{~m} / \mathrm{s})$
10. Bumper car A (326 Kg) with velocity $3.7 \mathrm{~m} / \mathrm{s}$ East collides with the rear of car $\mathrm{B}(536 \mathrm{Kg})$ which has a velocity of $2.4 \mathrm{~m} / \mathrm{s}$ East. After the collision, car A has a velocity of $1.2 \mathrm{~m} / \mathrm{s}$ to the West. What is the velocity of car B after the collision? ($5.38 \mathrm{~m} / \mathrm{s}$ East)
11. Bumper car $\mathrm{A}(428 \mathrm{Kg})$ with velocity $2.40 \mathrm{~m} / \mathrm{s}$ East collides with the front of car $\mathrm{B}(509 \mathrm{Kg})$ which has a velocity of $3.10 \mathrm{~m} / \mathrm{s}$ West. After the collision, car A has a velocity of $2.30 \mathrm{~m} / \mathrm{s}$ to the West. What is the velocity of car B after the collision? (Speed and direction) ($0.852 \mathrm{~m} / \mathrm{s}$ to the East)
12. 95.0 kg Thor is standing on a 65.0 kg cart, and is holding a 8.90 kg hammer. Everything is moving to the right at $1.80 \mathrm{~m} / \mathrm{s}$. What is the velocity of Thor and cart if he throws the hammer $12.5 \mathrm{~m} / \mathrm{s}$ to the right? $(1.205 \mathrm{~m} / \mathrm{s})$
13. 82.0 kg Big J Sandvik is standing on a 23.0 kg golf cart, and is holding a 3.60 kg golf club. Everything is moving to the right at $1.45 \mathrm{~m} / \mathrm{s}$. After he throws the golf club, he and his cart are moving $2.16 \mathrm{~m} / \mathrm{s}$ to the right. What speed and in what direction did Big J Sandvik throw the golf club? ($19.3 \mathrm{~m} / \mathrm{s}$ to the left)
14. 96.0 kg Thor is standing on a 45 kg cart, and is holding a 9.40 kg hammer. Everything is moving to the right at $2.30 \mathrm{~m} / \mathrm{s}$. After he throws the hammer, he is moving $1.70 \mathrm{~m} / \mathrm{s}$ to the right. What speed and in what direction did he throw the hammer? $(11.3 \mathrm{~m} / \mathrm{s}$ to the right)
15. 78.0 kg Big J Sandvik is standing on a 15.0 kg golf cart, and is holding a 3.40 kg golf club. Everything is moving to the right at some speed. After he throws the club, he is moving on the cart $3.00 \mathrm{~m} / \mathrm{s}$ to the right and the golf club is moving to the right at $23.0 \mathrm{~m} / \mathrm{s}$. What speed and in what direction was he, his cart and his club going to begin with? $(3.71 \mathrm{~m} / \mathrm{s}$ to the right)
16. A 132.45 g bullet traveling at $386 \mathrm{~m} / \mathrm{s}$ rips a hole through a 1.34 Kg block of wood at rest on some frictionless ice. The bullet is traveling $153 \mathrm{~m} / \mathrm{s}$ following the collision, what is the speed of the block? $(23.0 \mathrm{~m} / \mathrm{s})$
17. A 153 gram bullet going $452 \mathrm{~m} / \mathrm{s}$ goes through the first of two stationary 3.50 kg blocks of wood, and sticks in the second. After this, the first block is traveling at $6.50 \mathrm{~m} / \mathrm{s}$ in the same direction. What speed are the second block and bullet going? ($12.7 \mathrm{~m} / \mathrm{s}$) What is the bullet's velocity between the blocks? ($303 \mathrm{~m} / \mathrm{s}$)
18. 60.0 kg Brennen is playing on two flatbed rail cars initially at rest. Car A has a mass of $560 . \mathrm{kg}$ and B 780 . kg. He reaches a velocity of $+5.20 \mathrm{~m} / \mathrm{s}$ on A , before jumping to B where he slows to $+3.40 \mathrm{~m} / \mathrm{s}$ before jumping off the other end. The cars are uncoupled, and rest on a frictionless track:

i. What is the velocity of car A when he is in midair? $(-0.557 \mathrm{~m} / \mathrm{s})$
ii. What is the velocity of car B when he leaves it? $(+0.138 \mathrm{~m} / \mathrm{s})$
iii. What would have been the velocity of car B had he remained there, and not jumped off? $(+0.371 \mathrm{~m} / \mathrm{s})$
iv. What would the velocity of car B have been had he jumped off the back of it to give himself a velocity of zero? $(+0.40 \mathrm{~m} / \mathrm{s})$
