Practice Problems for 7.1

1. a. A rocket exerts 4.21 N of force for 1.47 seconds. What impulse does it impart? (6.19 N s)
b. A 35.0 N unbalanced force is exerted on a 3.10 Kg mass for 39.2 seconds. What is the change of velocity of the mass? ($443 \mathrm{~m} / \mathrm{s}$)
c. A 0.147 Kg baseball going $37.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $48.0 \mathrm{~m} / \mathrm{s}$. If the bat exerted a force of 2341 N , for what time was it in contact with the bat? (0.00534 s)
d. A rocket engine burns fuel at a rate of 14.5 grams per second, and develops a force of 9.20 N . What must be the exhaust velocity? $(1000$ grams $=1 \mathrm{~kg})(634 \mathrm{~m} / \mathrm{s})$
e. A 122 kg rocket (total mass of fuel and rocket), burns its fuel at a rate of $3.45 \mathrm{~kg} / \mathrm{s}$ for 23.0 seconds with an exhaust velocity of $772 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth?
($12.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 52.6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$)
2. a. What is the momentum of a 1.22 kg hammer going $3.46 \mathrm{~m} / \mathrm{s}$? $(4.22 \mathrm{~kg} \mathrm{~m} / \mathrm{s})$
b. A 59.0 N unbalanced force is exerted on an object for 5.20 seconds. The mass changes velocity from rest to $44.0 \mathrm{~m} / \mathrm{s}$. What is the mass of the object? (6.97 kg)
c. A 0.142 Kg baseball going $37.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $59.0 \mathrm{~m} / \mathrm{s}$. If the collision lasted for 0.0135 seconds, what force did the bat exert on the baseball? (1010 N)
d. A rocket engine burns fuel at a rate of 9.84 grams per second, and has an exhaust velocity of $985 \mathrm{~m} / \mathrm{s}$. What thrust does it develop? (1000 grams $=1 \mathrm{~kg}$) $(9.69 \mathrm{~N})$
e. A 362 kg rocket, 282 kg of which is fuel, burns all of its fuel in 35.0 seconds with an exhaust velocity of 869 m / s. What are its initial and final acceleration as it takes off from earth? $(9.53 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 77.7 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
3. a. A hammer has $22.3 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ of momentum, and is going $3.57 \mathrm{~m} / \mathrm{s}$, what is its mass? (6.25 kg)
b. A 24.0 N unbalanced force is exerted on a 12.0 Kg mass. The mass changes velocity from rest to $36 \mathrm{~m} / \mathrm{s}$.

What time did the force act? (18.0 s)
c. A 0.131 Kg baseball going $34.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $58.0 \mathrm{~m} / \mathrm{s}$. If the bat exerted a force of 952 N , for what time was it in contact with the bat? (0.0127 s)
d. A rocket engine burns fuel at a rate of 13.0 grams per second, and develops a force of 11.7 N . What must be the exhaust velocity? (1000 grams $=1 \mathrm{~kg}$) $(900 . \mathrm{m} / \mathrm{s})$
e. A 19.0 kg rocket, 12.0 kg of which is fuel, burns its fuel at a rate of $0.465 \mathrm{~kg} / \mathrm{s}$ with an exhaust velocity of 748 m / s. What are its initial and final acceleration as it takes off from earth? ($8.50 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 39.9 \mathrm{~m} / \mathrm{s} / \mathrm{s}$)
4. a. A rocket imparts 24.0 Ns of impulse in 2.22 s . What force does it exert? (10.8 N)
b. A force is exerted on a 14.0 Kg mass for 17.0 seconds. The mass changes velocity from rest to $38.0 \mathrm{~m} / \mathrm{s}$. What was the force? (31.3 N)
c. A ball going $29.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $42.0 \mathrm{~m} / \mathrm{s}$. If the bat exerted a force of 1210 N for 0.00830 seconds, what is the mass of the ball? $(0.141 \mathrm{~kg})$
d. A rocket develops a thrust of 14.2 N , with an exhaust velocity of $816 \mathrm{~m} / \mathrm{s}$. What mass in fuel does the engine burn every second? ($0.0174 \mathrm{~kg} / \mathrm{s}$)
e. A 52.0 kg rocket (total mass of fuel and rocket), burns fuel at a rate of $2.17 \mathrm{~kg} / \mathrm{s}$ for 19.3 seconds with an exhaust velocity of $748 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth?
($21.4 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 160 . \mathrm{m} / \mathrm{s} / \mathrm{s}$)
5. a. A rocket engine exerts 55.0 N of force, and imparts an impulse of 44.0 Ns . What time must it burn?
(0.800 s)
b. A 59.0 N unbalanced force is exerted on a 11.0 Kg mass for 5.20 seconds. What is the change of velocity of the mass? $(27.9 \mathrm{~m} / \mathrm{s})$
c. A 0.148 Kg baseball going $35.0 \mathrm{~m} / \mathrm{s}$, strikes a bat, and heads straight back to the outfield at $67.0 \mathrm{~m} / \mathrm{s}$. If the collision lasted for 0.0125 seconds, what force did the bat exert on the baseball? (1210 N)
d. A rocket engine burns fuel at a rate of 11.0 grams per second, and has an exhaust velocity of $845 \mathrm{~m} / \mathrm{s}$. What thrust does it develop? (1000 grams $=1 \mathrm{~kg}$) (9.30 N)
e. A 5.40 kg rocket, 4.30 kg of which is fuel, burns all of its fuel in 10.1 seconds with an exhaust velocity of 712 m / s. What are its initial and final acceleration as it takes off from earth? ($46.3 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 266 \mathrm{~m} / \mathrm{s} / \mathrm{s}$)

