Noteguide for MOMentum (Videos	s 7A)	Name	
Momentum: p = mv where p = momentum m = mass in kg v = velocity in m/s	Head on collisi	on - small vs big	
Example: What is the momentum of	a 145 g basebal	l going 40. m/s?	
Example: 60 kg Fran is running at 4 how fast was Joe going?	m/s when she co	ollides with 80 kg Joe. They	y hit and stop dead, so
Conservation of momentum:			
Whiteboards:			
1. What is the momentum of a 22 g s 5.2 m/s (0.11 kg m/s)	wallow going	2. What velocity must a 6.3 its momentum to be 5.8 kg	
3. A bowling ball has a momentum o	of 43.6 kg m/s w	hen it is going 12 m/s. Wha	at is its mass? (3.6 kg)

Impulse (change in momentum)

Impulse = $\mathbf{F} \Delta \mathbf{t}$ where

Example: What impulse is imparted by exerting a 12 N force for

F = Force 4.0 s?

 $\Delta t = \text{time that the force is exerted}$

Whiteboards:

- 1. What is the impulse of a 6.12 N force acting for 2.3 seconds (14 N s)
- 2. A rocket engine is rated at 14 N s of impulse, and burns for 1.7 seconds. What is the thrust of the engine? (8.2 N)

What is the impulse?

100 N

3. (560 N s)

Noteguide fo	r Impulse	and Momentum	(Videos	7C)
1000	- Linkaro	wiid ittoillelituili	(1 2000	,

Name		
Name		

Impulse = Change in momentum

 $Impulse = F\Delta \ t = m\Delta v$

F = Force(N)

 $\Delta t = Elapsed time (s)$

m = Mass (kg)

 $\Delta v =$ Change in velocity (m/s)

Example: A pitcher pitches a 0.145 kg baseball at 40. m/s, and the batter hits it directly back at 50. m/s to the outfield. What is the average force exerted by the bat if the collision lasted 0.013 s?

Deriving Newton's second law:

Whiteboards:

1. What force for 10. seconds makes a 2.0 kg rocket speed up to 75 m/s from rest? (15 N)	2. A baseball bat exerts a force of 200. N on a .50 kg ball for .10 seconds. What is the ball's change in velocity? (40 m/s)
3. Jolene exerts a 50. N force for 3.0 seconds on a stage set. It speeds up from rest to 0.25 m/s. What is the mass of the set? (600 kg)	4. A pitcher pitches a 0.145 kg baseball at 35.0 m/s, and the batter hits it directly back at 42.0 m/s to the outfield. The bat exerts an average force of 892 N on the ball. For what time does the collision last? (0.0125 s)

Notegu	ide f	for R	ncket	Science	(Videos	7D)
1101624	iuc i	UI IN	UCINCL	Buther	1 VIUCUS	יעו

Name ____

So:

- \bullet F = engine thrust
- $\bullet \Delta$ t = time to burn fuel
- \bullet m = mass of fuel burned
- • Δv = exhaust gas velocity

Example 1: A rocket burns fuel at a rate of 1.2 kg/s, with an exhaust velocity of 1250 m/s. What thrust does it develop?

Example 2: A model rocket has a mass of 0.238 kg, 0.126 kg of which is fuel. It burns its fuel at a rate of 0.0184 kg/s and has an exhaust velocity of 718 m/s What are the rocket's initial and final accelerations?

Whiteboards:

1. A certain rocket engine burns 0.0352 kg of fuel per second with an exhaust velocity of 725 m/s. What thrust does it generate? (25.5 N)	2. The Saturn V's first stage engines generated 33.82 MN of thrust (33.82 x 10 ⁶ N) with an exhaust velocity of 2254.7 m/s. What was its fuel burn rate? (15,000 kg/s)
3. A 270. kg rocket, 185 kg of which is fuel, burns all of its fuel in 26.0 seconds with an exhaust velocity of 852 m/s. What are its initial and final acceleration as it takes off from earth? (12.6 m/s/s, 61.5 m/s/s)	4. A 43.0 kg rocket (total mass of fuel and rocket), burns fuel at a rate of 1.54 kg/s for 13.7 seconds with an exhaust velocity of 821 m/s. What are its initial and final acceleration as it takes off from earth? (19.6 m/s/s, 47.9 m/s/s)

Solid Fuel:

Solid Fuel Engine:

Liquid Fuel:

•How do you keep it from tipping? •Why the "steam" coming off?

Ion Propulsion:

Low thrust/high Δv 20-50 km/s exhaust velocity Dawn

Why is momentum conserved:

Example 1: A 4.30 g bullet travelling 925 m/s horizontally strikes and sticks in a 121 g block of wood. What is the velocity of the bullet and block after the collision?

Example 2: 60.0 kg Brennen is at rest on a 352 kg flatbed cart. He runs to the right and is going 5.30 m/s before he leaps from the car. What is the recoil velocity of the flatbed car? Ignore the friction of the wheels.

Example 3: A 2560 kg Mazda Protégé going 27.0 m/s strikes a Ford Escort traveling 13.0 m/s in the same direction from behind. The two cars stick together and are going 20.6 m/s after the collision. What is the mass of the Escort?

Example 4: Bumper car A (450 Kg) with velocity 2.90 m/s East collides with the front of car B (580. Kg) which has a velocity of 3.40 m/s West. After the collision, car B has a velocity of 1.20 m/s to the East. What is the velocity of car A after the collision? (Speed and direction)

Whiteboards:

1.

Before
$$+$$
 After 6.20m/s $v = ?$ 13.0 kg 17.0 kg 13.0 kg 17.0 kg $17.$

Example 2: A 220. gram air track glider going 0.120 m/s collides head on with a 410. gram glider going the other way at 0.380 m/s. The gliders then stick together. What is their post collision speed? How much kinetic energy is lost in the collision?

Example 3:

(See if you can work this one out...)

Whiteboard 4: A 4.50 g bullet going 916 m/s horizontally sticks into a 1.12 kg block of wood hanging from a very long string. What is the velocity of the block right after the collision? To what height does the block rise on the string? (3.67 m/s, 0.685 m)

Example 5:

(See if you can work this one out...)

Whiteboard 6: A 6.30 g bullet going straight up at some speed strikes the bottom of a 1.65 kg block of wood at rest, and sticks in it without going through. The bullet and block combo fly 1.14 m up into the air. What was the post collision speed of the combo, and what was the bullet's original speed? (4.73 m/s, 1243 m/s)

Noteguide for Basic Quantities and Conversions (Videos 8ABC) Name_

8A:

Radians:

$$\theta = \frac{s}{r}$$
 $360^{\circ} = 2\pi \text{ radians} = \text{full circle}$

(Do 1-5 on the Worksheet)

Angular Quantities:

ıaı	Quantities.	
	Linear:	Angular:
	S	θ
	v	ω
	a	α

8B:

Conversions: (Let's use revolution as a synonym for rotation in this unit)

$$\begin{array}{c|c} \text{Radians} & = \text{rev x } (2\pi) \\ \text{Revolutions} & = \text{rad} \div (2\pi) \\ \text{Rad/s} & = \text{RPM x } (2\pi) \div (60) \\ \text{Rad/s} & = (\text{rev/s}) \text{ x } (2\pi) \\ \text{Rev/min (RPM)} & = (\text{rad/s}) \text{ x } (60) \div (2\pi) \end{array}$$

(Do 6-13 on the Worksheet)

8C:

Tangential relationships:

Linear:	Tangential: (at the edge of the wheel)			
	$= \theta r$ - Displacement*			
	= ωr - Velocity			
(m/s/s) a	$= \alpha r$ - Acceleration*			
* not in data packet				

(Do 14-23 on the Worksheet) - For 20-23, convert the angular quantity to radians, rad/s or rad/s/s, and then apply the tangential relationship.