Momentum:

$\mathbf{p}=\mathbf{m v}$ where \quad Head on collision - small vs big
$\mathrm{p}=$ momentum
$\mathrm{m}=$ mass in kg
$\mathrm{v}=$ velocity in m / s

Example: What is the momentum of a 145 g baseball going $40 . \mathrm{m} / \mathrm{s}$?

Example: 60 kg Fran is running at $4 \mathrm{~m} / \mathrm{s}$ when she collides with 80 kg Joe. They hit and stop dead, so how fast was Joe going?

Conservation of momentum:

Whiteboards:

1. What is the momentum of a 22 g swallow going $5.2 \mathrm{~m} / \mathrm{s}(0.11 \mathrm{~kg} \mathrm{~m} / \mathrm{s})$
2. What velocity must a 6.5 gram bullet have for its momentum to be $5.8 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$? $(890 \mathrm{~m} / \mathrm{s})$
3. A bowling ball has a momentum of $43.6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ when it is going $12 \mathrm{~m} / \mathrm{s}$. What is its mass? (3.6 kg)
\qquad

Impulse (change in momentum)

Impulse $=\mathbf{F} \Delta t$ where
F = Force
$\Delta t=$ time that the force is exerted

Example: What impulse is imparted by exerting a 12 N force for 4.0 s ?

Whiteboards:

| 1. What is the impulse of a 6.12 N force acting for |
| :--- | :--- |
| 2.3 seconds $(14 \mathrm{~N} \mathrm{~s})$ | | 2. A rocket engine is rated at 14 N s of impulse, |
| :--- |
| and burns for 1.7 seconds. What is the thrust of |
| the engine? $(8.2 \mathrm{~N})$ |

Impulse $=$ Change in momentum

Impulse $=\mathrm{F} \Delta \mathrm{t}=\mathrm{m} \Delta \mathrm{v}$
$\mathrm{F}=$ Force (N)
$\Delta t=$ Elapsed time (s)
$\mathrm{m}=$ Mass (kg)
$\Delta v=$ Change in velocity (m / s)
Example: A pitcher pitches a 0.145 kg baseball at $40 . \mathrm{m} / \mathrm{s}$, and the batter hits it directly back at $50 \mathrm{~m} / \mathrm{s}$ to the outfield. What is the average force exerted by the bat if the collision lasted 0.013 s ?

Deriving Newton's second law:

Whiteboards:

1. What force for 10. seconds makes a 2.0 kg rocket speed up to $75 \mathrm{~m} / \mathrm{s}$ from rest? $(15 \mathrm{~N})$	2. A baseball bat exerts a force of 200. N on a .50 kg ball for . 10 seconds. What is the ball's change in velocity? $(40 \mathrm{~m} / \mathrm{s})$
3. Jolene exerts a $50 . \mathrm{N}$ force for 3.0 seconds on a stage set. It speeds up from rest to $0.25 \mathrm{~m} / \mathrm{s}$. What is the mass of the set? (600 kg$)$	4. A pitcher pitches a 0.145 kg baseball at 35.0 $\mathrm{~m} / \mathrm{s}$, and the batter hits it directly back at $42.0 \mathrm{~m} / \mathrm{s}$ to the outfield. The bat exerts an average force of 892 N on the ball. For what time does the collision last? (0.0125 s$)$

So:
$\cdot \mathrm{F}=$ engine thrust

- $\Delta t=$ time to burn fuel -m = mass of fuel burned - $\Delta \mathrm{v}=$ exhaust gas velocity

Example 1: A rocket burns fuel at a rate of $1.2 \mathrm{~kg} / \mathrm{s}$, with an exhaust velocity of $1250 \mathrm{~m} / \mathrm{s}$. What thrust does it develop?

Example 2: A model rocket has a mass of $0.238 \mathrm{~kg}, 0.126 \mathrm{~kg}$ of which is fuel. It burns its fuel at a rate of $0.0184 \mathrm{~kg} / \mathrm{s}$ and has an exhaust velocity of $718 \mathrm{~m} / \mathrm{s}$
What are the rocket's initial and final accelerations?

Whiteboards:

1. A certain rocket engine burns 0.0352 kg of fuel per second with an exhaust velocity of $725 \mathrm{~m} / \mathrm{s}$. What thrust does it generate? (25.5 N)	2. The Saturn V's first stage engines generated 33.82 MN of thrust (33.82 x $10^{6} \mathrm{~N}$) with an exhaust velocity of $2254.7 \mathrm{~m} / \mathrm{s}$. What was its fuel burn rate?$(15,000 \mathrm{~kg} / \mathrm{s})$
3. A $270 . \mathrm{kg}$ rocket, 185 kg of which is fuel, burns all of its fuel in 26.0 seconds with an exhaust velocity of $852 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth?$(12.6 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 61.5 \mathrm{~m} / \mathrm{s} / \mathrm{s})$	4. A 43.0 kg rocket (total mass of fuel and rocket), burns fuel at a rate of $1.54 \mathrm{~kg} / \mathrm{s}$ for 13.7 seconds with an exhaust velocity of $821 \mathrm{~m} / \mathrm{s}$. What are its initial and final acceleration as it takes off from earth?$(19.6 \mathrm{~m} / \mathrm{s} / \mathrm{s}, 47.9 \mathrm{~m} / \mathrm{s} / \mathrm{s})$

Solid Fuel:
Solid Fuel Engine:

Liquid Fuel:

-How do you keep it from tipping? -Why the "steam" coming off?

Ion Propulsion:

Why is momentum conserved:

Example 1: A 4.30 g bullet travelling $925 \mathrm{~m} / \mathrm{s}$ horizontally strikes and sticks in a 121 g block of wood. What is the velocity of the bullet and block after the collision?

Example 2: 60.0 kg Brennen is at rest on a 352 kg flatbed cart. He runs to the right and is going 5.30 m / s before he leaps from the car. What is the recoil velocity of the flatbed car? Ignore the friction of the wheels.

Example 3: A 2560 kg Mazda Protégé going $27.0 \mathrm{~m} / \mathrm{s}$ strikes a Ford Escort traveling $13.0 \mathrm{~m} / \mathrm{s}$ in the same direction from behind. The two cars stick together and are going $20.6 \mathrm{~m} / \mathrm{s}$ after the collision. What is the mass of the Escort?

Example 4: Bumper car A (450 Kg) with velocity $2.90 \mathrm{~m} / \mathrm{s}$ East collides with the front of car B (580. Kg) which has a velocity of $3.40 \mathrm{~m} / \mathrm{s}$ West. After the collision, car B has a velocity of $1.20 \mathrm{~m} / \mathrm{s}$ to the East. What is the velocity of car A after the collision? (Speed and direction)

Whiteboards:
1.

($2.3 \mathrm{~m} / \mathrm{s}$ to the right)
2.

($4.7 \mathrm{~m} / \mathrm{s}$ to the left)
3.

$(1.73 \mathrm{~m} / \mathrm{s}$ to the right)
4.

$(11.9 \mathrm{~m} / \mathrm{s}$ to the right)

Noteguide for Energy and Momentum (Videos 7F)
$351 \mathrm{~m} / \mathrm{s}$

0.012 kg

Before

3.215 kg

Name After

What is the KE before and after?

Example 2: A 220. gram air track glider going $0.120 \mathrm{~m} / \mathrm{s}$ collides head on with a 410 . gram glider going the other way at $0.380 \mathrm{~m} / \mathrm{s}$. The gliders then stick together. What is their post collision speed? How much kinetic energy is lost in the collision?

(See if you can work this one out...)
Whiteboard 4: A 4.50 g bullet going $916 \mathrm{~m} / \mathrm{s}$ horizontally sticks into a 1.12 kg block of wood hanging from a very long string. What is the velocity of the block right after the collision? To what height does the block rise on the string? $(3.67 \mathrm{~m} / \mathrm{s}, 0.685 \mathrm{~m})$

Example 5:

(See if you can work this one out...)
Whiteboard 6: A 6.30 g bullet going straight up at some speed strikes the bottom of a 1.65 kg block of wood at rest, and sticks in it without going through. The bullet and block combo fly 1.14 m up into the air. What was the post collision speed of the combo, and what was the bullet's original speed?
($4.73 \mathrm{~m} / \mathrm{s}, 1243 \mathrm{~m} / \mathrm{s}$)
\qquad
8A:
Radians:

$$
\begin{aligned}
& \theta=\frac{s}{r} \\
& 360^{\circ}=2 \pi \text { radians }=\text { full circle }
\end{aligned}
$$

(Do 1-5 on the Worksheet)

Angular Quantities:

Linear:	Angular:
S	θ
v	ω
a	α

8B:

Conversions: (Let's use revolution as a synonym for rotation in this unit)

$$
\begin{aligned}
\text { Radians } & =\operatorname{rev} \times(2 \pi) \\
\text { Revolutions } & =\operatorname{rad} \div(2 \pi) \\
\mathrm{Rad} / \mathrm{s} & =\operatorname{RPM} \times(2 \pi) \div(60) \\
\mathrm{Rad} / \mathrm{s} & =(\mathrm{rev} / \mathrm{s}) \times(2 \pi) \\
\mathrm{Rev} / \mathrm{min}(\mathrm{RPM}) & =(\mathrm{rad} / \mathrm{s}) \times(60) \div(2 \pi)
\end{aligned}
$$

(Do 6-13 on the Worksheet)

8C:

Tangential relationships:

Linear:	Tangential: (at the edge of the wheel)	
$(\mathrm{m}) \mathrm{s}$	$=\theta \mathrm{r}$	- Displacement*
$(\mathrm{m} / \mathrm{s}) \mathrm{v}$	$=\omega \mathrm{r}$	- Velocity
$(\mathrm{m} / \mathrm{s} / \mathrm{s}) \mathrm{a}$	$=\alpha \mathrm{r}$	- Acceleration*
	$*$ not in data packet	

(Do 14-23 on the Worksheet) - For 20-23, convert the angular quantity to radians, rad/s or $\mathrm{rad} / \mathrm{s} / \mathrm{s}$, and then apply the tangential relationship.

