Work - Transfer of energy

$$
\text { Work }=(\text { Force })(\text { Distance })
$$

$W=F s \cos \theta$

Whiteboards:

1. Fred O'Dadark exerts 13.2 N on a rope that makes a 32° angle with the ground, sliding a sled 12.5 m along the ground. What work did he do?

Example: What is the work done if you exert $12 . \mathrm{N}$ to drag a box 4.0 m across the floor? (Be sure to write down what a Joule is)

Gravitational Potential Energy

Example: What is the potential energy of a 5.00 kg mass that is 2.00 m above the ground?

Whiteboards:

1. What is the potential energy of a 4.5 kg bowling ball, 13.5 cm above the ground? (6.0 J)
2. Toby Continued lifts a 75.0 kg box doing 1573 J of work. What is the change in height of the box? (2.14 m)
3. Colin Host lifts himself up 15 m doing 9555 J of work. What is his mass? (65 kg)

Kinetic Energy

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{mv}^{2} \\
& \mathrm{E}_{\mathrm{k}} \text { - Kinetic energy } \\
& \mathrm{v} \text { - velocity } \\
& \mathrm{m} \text { - mass }
\end{aligned}
$$

Example: What is the kinetic energy of a 0.145 kg baseball going $40.0 \mathrm{~m} / \mathrm{s}$? (about 90 mph)

Whiteboards:

1. What is the kinetic energy of a 4.20 g bullet going $965 \mathrm{~m} / \mathrm{s} ? ~($ units? $(1960 \mathrm{~J})$	2. What speed must a 0.563 kg hammer move to store 34 J of energy? $(11 \mathrm{~m} / \mathrm{s})$
3. A 4.0 kg shot is sped up from $6.0 \mathrm{~m} / \mathrm{s}$ to $9.0 \mathrm{~m} / \mathrm{s}$. What is the change in kinetic energy? $90 . \mathrm{J})$	4. A European swallow has 2.055 J of kinetic energy when it is flying at $14.23 \mathrm{~m} / \mathrm{s}$. What is its mass in grams? $(20.29 \mathrm{~g})$

Force on springs

$$
\begin{aligned}
& \mathrm{F}=\mathrm{kx} \\
& \cdot \mathrm{~F}=\text { restoring force (in } \mathrm{N} \text {) } \\
& \cdot \mathrm{k}=\text { spring constant (in } \mathrm{N} / \mathrm{m} \text {) (spring stiffness) } \\
& \cdot \mathrm{x} \text { - Amount the spring has been distorted (in } \mathrm{m} \text {) } \\
& \text { (stretched,/compressed) } \\
& \text { alumumuluo }
\end{aligned}
$$

Example: Ali Zabov stretches a $53 \mathrm{~N} / \mathrm{m}$ spring 13 cm with what force?

Whiteboards:

1. A spring requires 15 N to stretch 42 cm . What is the spring constant K ? $(35.7 \mathrm{~N} / \mathrm{m})$
2. Nona Zabov allows the weight of a 2.1 kg mass to stretch a $35 \mathrm{~N} / \mathrm{m}$ spring. What distance does it stretch? (0.59 m)

Noteguide for Spring Energy (Videos 6F)

Name
Energy Stored in a Spring:

Where:
E_{p}-potential energy stored in spring (J)
k - spring constant (N / m)
x - amount of
stretch/compression (m)

Example: What is the energy stored in a spring with a spring constant of $30 . \mathrm{N} / \mathrm{m}$ when it is stretched 15 cm ?

Whiteboards:

1. Mary H. Little-Lamb has a $24 \mathrm{~N} / \mathrm{m}$ spring that is 31 cm long un-stretched. What energy does she store in it if she stretches it until it is 46 cm long? (0.27 J)	2. A spring stores 56 J of energy being distorted 1.45 m . What is its spring constant? ($53 \mathrm{~N} / \mathrm{m}$)
3. What amount must you distort a $14.5 \mathrm{~N} / \mathrm{m}$ spring to store 98 J of energy? (3.7 m)	4. How much work is it to stretch a $23.5 \mathrm{~N} / \mathrm{m}$ spring from 1.14 m to 1.56 m of distortion? (13.3 J)

Total Energy before $=$ Total Energy After
Comes from = Goes to
Assets $=$ Expenditures
$\mathrm{Fs}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{kx}=\mathrm{Fs}+\mathrm{mgh}+1 / 2 \mathrm{~m} v^{2}+1 / 2 \mathrm{kx}^{2}$

A 250 kg cart going $4.5 \mathrm{~m} / \mathrm{s}$ rolls down a 1.75 m tall hill. What is the velocity of the cart at the

$\mathrm{Fs}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{kx}^{2}=\mathrm{Fs}+\mathrm{mgh}+1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{kx}^{2}$

Example 1

An 890 kg cart rolling $6.2 \mathrm{~m} / \mathrm{s}$ along a level surface hits a 3.6 m long puddle that exerts 3200 N of average retarding force. What is the cart's velocity after this?

3.6 m
(Puddle - Exerts 3200 N of retarding force)

Example 2

Example 3

A 350 kg cart is going $4.6 \mathrm{~m} / \mathrm{s}$. For what distance must a person exert a forward force of 53 N so that when the cart gets to the top of a 1.8 m tall hill it is going $2.4 \mathrm{~m} / \mathrm{s}$?

Noteguide for Power (Videos 6H)

Name

$$
P=\frac{W}{t}=F v \quad \begin{array}{r}
\text { power }=\frac{\text { energy }}{\text { time }} \\
\quad \text { power }=F V
\end{array} \quad(8.1 .1)
$$

A person does 48 J of work in 6.0 s . What is their power output?

Examples
How much energy does a 75 Watt light bulb \quad My 30 . HP van could go $25 \mathrm{~m} / \mathrm{s}$ top speed. What was the consume in a minute? (60 s) force resisting its motion?
1 horsepower = 745.7 Watts, $1 \mathrm{~kW}=1000$ Watts

Whiteboards:

1. Joe Mama does 613 J of work in 2.13 seconds.	2. Ima Wonder can put out 127 W of power. What time will it take her to do 671 J of work? $(5.28 \mathrm{~s})$		
What is his power output? $(288 \mathrm{~W})$		\quad	
:---			
3. What work does a 1.5 HP motor do in 1 minute? $(1 \mathrm{hp}=745.7 \mathrm{~W})(67,000 \mathrm{~J})$			
4. Bob N. Frappels slides a box with 43 N of force at a constant speed of $5.3 \mathrm{~m} / \mathrm{s}$. What is his power output? $(230 \mathrm{~W})$			

5. Frieda People can put out 430. W of power. With what speed can she push a car if it takes 152 N to make it move at a constant velocity? $(2.83 \mathrm{~m} / \mathrm{s})$

Formulas:	Things we can know
$\mathrm{F}=\mathrm{mg} \quad$ (Lifting)	$\mathrm{P}-$ Power (in W)
$\mathrm{F}=\mu \mathrm{mg}$ (Dragging)	$\mathrm{W}-$ Work (in J$)$
$\mathrm{P}=\mathrm{W} / \mathrm{t} \quad$ (Power)	$\mathrm{F}-$ Force (in N$)$
$\mathrm{W}=\mathrm{Fs} \quad$ (Work)	$\mathrm{s}-$ distance (in m)
	$\mathrm{t}-$ time (in s$)$
	$\mathrm{m}-$ mass (in kg$)$
	$\mu-$ coefficient of friction

Example 1-A 840 W winch can lift a 2350 kg Land Rover up 8.2 m into a tree in what time?

Example 2 - Gumi Baere drags a 45.1 kg box that has a coefficient of friction between it and the floor of 0.34 a distance of 16 m in 11.7 seconds. What is her power output?

Whiteboards:

1. What must be the power rating of a motor if it is to lift a 560 kg elevator up 3.2 m in 1.5 seconds? $(11,700 \mathrm{~W})$	2. A 560. W winch can lift a car 5.2 m in 37 seconds. What must be the mass of the car? $1 \mathrm{HP}=745.7 \mathrm{~W}(407 \mathrm{~kg})$

Name

$$
e=\frac{W_{o}}{W_{i}}=\frac{P_{o}}{P_{i}}
$$

$$
\begin{align*}
\text { efficiency } & =\frac{\text { useful work out }}{\text { total work in }} \\
& =\frac{\text { useful power out }}{\text { total power in }} \tag{2.3.6}
\end{align*}
$$

Example: A 1 HP motor consumes 815 W of power. What is its efficiency?

Whiteboards:

1. A motor consumes 425 J of energy and does 300 J of work. $\mathrm{e}=$? (0.71 or 71%)	2. A person is 13% efficient. How much food energy to do 600. J of work? (4600 J)
3. A $60 . \%$ efficient heater uses 800 . J of energy. What is its heat output? (480 J)	4. A car is 25% efficient. What energy input does it need to climb a 320 m tall hill if its mass is 1200 kg ? $\mathrm{W}_{\mathrm{o}}=\mathrm{mgh}$ for the car $\left(1.5 \times 10^{7} \mathrm{~J}\right)$

