Noteguide for Work	and Energy	(Videos	6A and 6	5B)
--------------------	------------	---------	----------	-------------

What is Energy:

Electromagnetic

Potential

Kinetic

Thermal

 \underline{Work} - Transfer of energy

Example: What is the work done if you exert 12. N to drag a box 4.0 m across the floor? (Be sure to write down what a Joule is)

Work = (Force)(Distance)

 $W = Fs \cos\theta$

1. Fred O'Dadark exerts 13.2 N on a rope that makes a 32° angle with the ground, sliding a sled 12.5 m along the ground. What work did he do?	2. Jane Linkfence does 132 J of work lifting a box1.56 m. What is the weight of the box?
3 Halana Handbackat brings a 5.2 kg box down fro	m a 1.45 m tall shalf. What work does she do?
5. Helena Hanubasket brings a 5.2 kg box down no	In a 1.45 in tan shen. What work does she do?

Gravitational Potential Energy

Example: What is the potential energy of a 5.00 kg mass that is 2.00 m above the ground?

1. What is the potential energy of a 4.5 kg bowling	2. Toby Continued lifts a 75.0 kg box doing 1573 J
ball, 13.5 cm above the ground? (6.0 J)	of work. What is the change in height of the box?
	(2.14 m)
3. Colin Host lifts himself up 15 m doing 9555 J of	work. What is his mass? (65 kg)
······································	

Noteguide for Kinetic Energy (Videos 6D)

Name _____

Example: What is the kinetic energy of a 0.145 kg baseball going 40.0 m/s? (about 90 mph)

Whiteboards:	
1. What is the kinetic energy of a 4.20 g bullet going 965 m/s? (units?) (1960 J)	2. What speed must a 0.563 kg hammer move to store 34 J of energy? (11 m/s)
3. A 4.0 kg shot is sped up from 6.0 m/s to 9.0 m/s. What is the change in kinetic energy? (90. J)	4. A European swallow has 2.055 J of kinetic energy when it is flying at 14.23 m/s. What is its mass in grams? (20.29 g)

Force on springs

F = kx •F = restoring force (in N) •k = spring constant (in N/m) (spring stiffness) •x - Amount the spring has been distorted (in m) (stretched,/compressed)

0......

or and the second secon

Example: Ali Zabov stretches a 53 N/m spring 13 cm with what force?

() Inteo our do.	
1. A spring requires 15 N to stretch 42 cm. What is the spring constant K? (35.7 N/m)	2. Nona Zabov allows the weight of a 2.1 kg mass to stretch a 35 N/m spring. What distance does it stretch? (0.59 m)

Noteguide for Spring Energy (Videos 6F)

Name

Example: What is the energy stored in a spring with a spring constant of 30. N/m when it is stretched 15 cm?

Whiteboards:	
1. Mary H. Little-Lamb has a 24 N/m spring that is 31 cm long un-stretched. What energy does she store in it if she stretches it until it is 46 cm long? (0.27 J)	2. A spring stores 56 J of energy being distorted 1.45 m. What is its spring constant? (53 N/m)
3. What amount must you distort a 14.5 N/m spring to store 98 J of energy? (3.7 m)	4. How much work is it to stretch a 23.5 N/m spring from 1.14 m to 1.56 m of distortion? (13.3 J)

Total Energy before = Total Energy After Comes from = Goes to Assets = Expenditures

 $Fs + mgh + \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = Fs + mgh + \frac{1}{2}mv^2 + \frac{1}{2}kx^2$

(Puddle - Exerts 3200 N of retarding force)

Example 3

A 0.124 kg pine cone falls 45.0 m from a tree. It is going 22.0 m/s when it strikes the ground. What is the average force of air friction that acts on the pine cone as it falls?

$P = \frac{W}{W} = Fv$	$power = \frac{energy}{time} (8)$	8.1.1)	A person does 48 J of work in 6.0 s. output?	What is their power
t	power = <i>Fv</i>	(2.3.5)		

Examples

How much energy does a 75 Watt light bulb consume in a minute? (60 s)	My 30. HP van could go 25 m/s top speed. What was the force resisting its motion? 1 horsenower = 745.7 Watts $1 \text{ kW} = 1000$ Watts
	Thorsepower – 745.7 Watts, TKW – 1000 Watts

1. Joe Mama does 613 J of work in 2.13 seconds. What is his power output? (288 W)	2. Ima Wonder can put out 127 W of power. What time will it take her to do 671 J of work? (5.28 s)
3. What work does a 1.5 HP motor do in 1 minute? (1 hp = 745.7 W) (67,000 J)	4. Bob N. Frappels slides a box with 43 N of force at a constant speed of 5.3 m/s. What is his power output? (230 W)
5. Frieda People can put out 430. W of power. With make it move at a constant velocity? (2.83 m/s)	what speed can she push a car if it takes 152 N to

Formulas:	Things we can know
F = mg (Lifting)	P - Power (in W)
$F = \mu m g$ (Dragging)	W - Work (in J)
P = W/t (Power)	F - Force (in N)
W = Fs (Work)	s - distance (in m)
(((((((((((((((((((((((((((((((((((((((t - time (in s)
	m - mass (in kg)
	μ - coefficient of friction
Example 1 - A 840 W winch can lift	a 2350 kg Land Rover up 8.2 m into a tree in what time?

Example 2 - Gumi Baere drags a 45.1 kg box that has a coefficient of friction between it and the floor of 0.34 a distance of 16 m in 11.7 seconds. What is her power output?

1. What must be the power rating of a motor if it is	2. A 560. W winch can lift a car 5.2 m in 37
to lift a 560 kg elevator up 3.2 m in 1.5 seconds?	seconds. What must be the mass of the car?
(11,700 W)	1 HP = 745.7 W (407 kg)
3. Red Elk leads a dog team that can put out 2.5	4. A 50.0 HP tractor can drag a 982 kg load how
kW of power. They skid a 312 kg sled a distance	far in a minute if the coefficient of friction
of 340 m in 93 seconds. What must be the	between the load and the ground is 0.780.
coefficient of friction? (0.22)	1 HP = 745.7 W (298 m)

Noteguide for Efficiency (Videos 6J)

Name

$$e = \frac{W_o}{W_i} = \frac{P_o}{P_i}$$
efficiency = $\frac{\text{useful work out}}{\text{total work in}}$

$$= \frac{\text{useful power out}}{\text{total power in}} (2.3.6)$$

Example: A 1 HP motor consumes 815 W of power. What is its efficiency?

1. A motor consumes 425 J of energy and does 300 J of work. e = ? (0.71 or 71%)	2. A person is 13% efficient. How much food energy to do 600. J of work? (4600 J)
3. A 60.% efficient heater uses 800. J of energy. What is its heat output? (480 J)	4. A car is 25% efficient. What energy input does it need to climb a 320 m tall hill if its mass is 1200 kg? $W_o = mgh$ for the car (1.5x10 ⁷ J)